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Abstract

Human language is unique in its compositional, open-ended, and sequential form, and its

evolution is often solely explained by advantages of communication. However, it has proven

challenging to identify an evolutionary trajectory from a world without language to a world

with language, especially while at the same time explaining why such an advantageous phe-

nomenon has not evolved in other animals. Decoding sequential information is necessary

for language, making domain-general sequence representation a tentative basic require-

ment for the evolution of language and other uniquely human phenomena. Here, using for-

mal evolutionary analyses of the utility of sequence representation we show that sequence

representation is exceedingly costly and that current memory systems found in animals may

prevent abilities necessary for language to emerge. For sequence representation to evolve,

flexibility allowing for ignoring irrelevant information is necessary. Furthermore, an abun-

dance of useful sequential information and extensive learning opportunities are required,

two conditions that were likely fulfilled early in human evolution. Our results provide a novel,

logically plausible trajectory for the evolution of uniquely human cognition and language,

and support the hypothesis that human culture is rooted in sequential representational and

processing abilities.

Author summary

Why only humans have complex language is an unsolved question. Theories of language

evolution often highlight the advantage of flexible and precise communication. Given these

obvious advantages, it is difficult to explain why language has not evolved in other animals.

Here we investigate the hypothesis that the human ability to recognize and remember

sequences is an important evolutionary step towards human language, and a key trait for

the evolution of human culture and thinking. Mathematical analyses show that remember-

ing and learning to respond to temporal sequences of consecutive events takes a lot of time

and is exceedingly costly. This suggests that costs associated with taking sequences into
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account can explain why language has only evolved once. Computer simulations further

show that memory systems found in other animals are more beneficial than sequence

memory under most circumstances. Sequence memory is only beneficial when the envi-

ronment contains information in sequential form, and if individuals are allowed unusually

long learning times, conditions fulfilled in human prehistory. Our results suggest a trajec-

tory for the evolution of uniquely human cognition and language, and support the hypoth-

esis that human culture is rooted in memory for stimulus sequences.

Introduction

Human language is uniquely complex in relation to other species’ communication. Key ques-

tions for understanding the evolution of human language are why it evolved, why it did not
evolve in other species, and what actually evolved. The question of why language evolved is not

difficult to answer, considering the enormous advantages of precise and flexible transmission

of information for a social species [1–3]. In the light of these advantages, the question of why

language has not evolved in other species is more difficult to answer, and often left unad-

dressed. As for the question of what actually evolved, theories range from genetically deter-

mined linguistic abilities [4–6] to language-specific learning processes [7–9], to claiming that

language can emerge from general-purpose learning [10, 11] coupled with cultural processes

[12, 13]. Extensive variability across languages in, for example, phonology and grammar, and

the gradual learning that requires social input, rule out rigid genetic determination [12, 14].

However, attributing language entirely to learning and culture does not explain why proficient

learners like great apes cannot acquire language. The cultural evolution of language must be

preceded by the biological evolution of some supporting mental capacities that are not found

in other animals [7, 15–17]. Sequential structure is important in language [18–24] and sensitiv-

ity to linguistic sequences has been suggested as a fundamental prerequisite for human com-

munication, that may initially evolve as an adaptation to the information structure in foraging

environments [25–28].

Here, we explore the simpler hypotheses that domain-general sequence representation is a

first step towards human language and thinking, and that non-human animals lack such

sequence representation because under most circumstances it is not beneficial. This hypothesis

is grounded in a suggested taxonomic gap between humans and other animals in recognizing

and remembering sequential information [23, 29, 30]. Our reason for taking this tentative tax-

onomic gap as our starting point is recent empirical studies showing that animals may not be

able to faithfully represent sequential information [23, 30]. Below we expand on this point.

Sequential abilities in animals

A sequence is here defined as a temporal series of at least two successive stimuli. This can be,

for example, a sequence of sounds, sensory input, words in spoken language, or visual observa-

tions of events following each other. Faithful sequence representation implies a mental repre-

sentation with precise information on the order of the stimuli in a sequence. If sequence

representation is not faithful, it means that the exact order of the stimuli is not represented,

and this information can thus not guide subsequent decisions or behaviour. Recent empirical

studies suggest that non-human animals do not rely on faithful sequence representation when

discriminating between sequences of stimuli but instead rely on memory traces of stimuli,

where the intensity of the memory for each stimulus decays over time. A comprehensive meta-

study, incorporating over 100 discrimination experiments in mammals and birds [23]
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including, for example, rule learning [31, 32], artificial grammar [33–35], sequence discrimina-

tion [36, 37] and birdsong [38, 39], shows that the trace memory model can account well for

how animals recognize and remember sequences of stimuli, and there are subsequent consis-

tent results from great apes [29, 30]. This points to the importance of considering trace mem-

ory as an explanation when limited sequence discrimination is observed in similar studies

[40–44]. Importantly, our focus here is on the representation of input stimuli and not on

sequential behavioural output. Performing behaviour sequences does not require recognizing

and remembering sequential information [45], as it can be learned through primary and con-

ditioned reinforcement [46–48]. Furthermore, computational models that do not rely on

sequence representation account well for the acquisition of various behavior sequences in

non-human animals, including tool use [49], planning [50], social learning [51] and caching

[52].

Sequences and compositionality in humans and other animals

Compositionality, implying that the meaning of an expression is determined by the meaning

of its components and their organization [53], is often considered defining for human lan-

guage [16, 54]. Linguistic compositionality is open-ended and productive, meaning that

humans readily know how and where to insert a new element in a known structure [55]. This

is not possible without faithful sequence representation. At the same time, a large body of

work in animal cognition and communication claims that a basic form of compositionality

can be found in combinations of calls in primates and birds [43, 56–67]. These studies postu-

late that genetic support underlying relatively simple combinatorial or compositional expres-

sions would be present not only in humans but also in a variety of other species, and many

suggest that this provides a key to understanding the evolution of human capacities for more

complex and hierarchical compositional structures [68]. There are, however, fundamental dif-

ferences between combinations of calls in animals and compositionality in human language.

Words and morphemes in human languages are learned and arbitrary, allowing for the open-

ended productivity that characterizes human language. This kind of open-ended productivity

has not been observed in other animals. Processing and producing non-productive call combi-

nations does not require generalized faithful sequence representation. Even vocal learners with

the capacity to imitate sound sequences do not recognize and remember arbitrary sequences

of information faithfully. Instead, they seem to rely on approximate sequence representation

for arbitrary stimuli [23, 30] and specialized memory mechanisms for vocal learning [69, 70].

Thus, while there are surface similarities between combinatorial communication in animals

and humans, it is not clear that they rely upon similar biological foundations. This motivates

our theoretical investigation of the alternative hypothesis that faithful sequence representation

is a domain-general prerequisite for the human language ability that is not found in other ani-

mals. This hypothesis aligns with the view that language structure is culturally emergent rather

that inborn, a view prevalent in cognitive linguistics and with broad support in the field of lan-

guage evolution [13, 71–78]

A hypothesis for language, culture and thinking

Considering the general nature of the tentative taxonomic gap related to sequence representa-

tion, prerequisites for language may also underlie other phenomena. Many fundamental

human capacities require the ability to represent, store and recall sequential information and

develop gradually from an early age, such as sequence imitation [79, 80], causal understanding

[81], planning [82, 83], mathematics [84, 85], music syntax [86], and reading and writing [87].

Human sequence processing capacities may thus provide a starting point for understanding
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the evolution of uniquely human cognitive elements including not only language but also

thinking and cumulative culture on a grand scale [88]. Sequence representation as a necessary

evolutionary step towards language constitutes an explicit hypothesis aiming at answering the

question of what evolved. This hypothesis also has the potential to explain why language has

not evolved more than once, given that generalized sequence representation, as we will show,

is not only beneficial but also very costly.

Benefits and costs of sequential information

Before considering the evolution of memory capacities we want to emphasize that they incur

costs. Consider an organism that can perceive n different stimuli in the world. As we are inves-

tigating the costs of a general sequence memory we are not constrained to linguistic or com-

municative stimuli, but refer to any kind of stimulus that can be seen, heard, felt, smelled or

tasted by the organism in its environment. If the organism makes decisions based only on the

last perceived stimulus, it only needs to learn to recognize and respond to n situations. If, how-

ever, the organism considers the two last perceived stimuli, it has to learn to respond to up to

n2 situations, which requires more time and effort. In general, representing the last ℓ stimuli

means having to learn to respond to up to nℓ situations, which means that increasing ℓ gener-

ates exponentially increasing learning costs. In reality, not all of these sequences are likely to

occur, but even if only a fraction of them do, increasing ℓ will still generate accelerating growth

of the number of sequences. If the number n of perceived single stimuli is constant, these costs

are determined purely by the sequence length considered for decision making, even if a shorter

length suffices for productive behavior. For example, suppose that the current stimulus is suffi-

cient to behave productively, and for simplicity we consider all possible combinations of sti-

muli. An organism that can take into account the current stimulus and the previous one will

still have to decide what to do in n2 situations, even if it eventually will learn the same behavior

in all sequences that end with the same stimulus. This is because two-stimulus sequences such

as (A, B) and (C, B) will appear different, and the fact that they require the same behavior

(determined by the B stimulus) will need to be discovered by trial and error. Representing lon-

ger sequences is also likely to incur increased costs related to memory and processing time, but

we do not consider these costs in our analysis in order to keep the model simple and to focus

on learning costs. In this manuscript we study the benefits and costs of representing input

sequences faithfully. We first explore the general costs of sequential information and its rela-

tion to learning opportunities and information distribution in an analytical model. We then

proceed to investigate the performance of different strategies for representing sequences in

learning simulations, where learners are exposed to environments with different information

distributions and information structures that we consider more typical for non-cultural and

cultural information respectively.

Results and discussion

Learning costs may prevent sequence representation from evolving

To explore a potential first step in the evolution of language we use both analytical modelling

and computer simulations of learning. For a detailed description of the computer simulations

and the relation between the simulations and the analytical model, see the Methods section.

To understand when evolution would favor taking sequential information into account, we

start by investigating the utility of sequential information in an analytical model. The purpose

of the model is to gain a general understanding of the learning costs associated with the combi-

natorial explosion that comes with sequential information. As stated above, this combinatorial

explosion is generated by the fact that if an organism can perceive n stimuli in the world and
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the same organism can consider the ℓ last perceived stimuli when making a decision, the

organism will perceive up to nl different situations and has to learn the best response to each of

them. The question is, given this assumption, what circumstances would be necessary for

representation of sequences to be beneficial? We address this question in a formal analysis.

To understand when evolution would favor taking sequential information into account, we

estimate as follows the fitness of an organism that uses the last ℓ stimuli to make decisions. We

call ℓ the decision depth, that we assume to be constant within each individual. We label a deci-

sion “productive” if it is the option that yields the highest utility, e.g. eating when seeing food

or answering “yes” when asked if you want dinner. Making a non-productive decision implies

losing time and energy. Fitness is defined as the expected number of productive decisions over

a lifetime, say T time steps. Time is stepped at each sequence exposure. This means that at time

t the organism has been exposed to t sequences. If u(ℓ, t) is the probability that the decision

taken at time t is productive, given a decision depth of ℓ, then fitness is:

Uð‘;TÞ ¼
XT� 1

t¼0

uð‘; tÞ ð1Þ

We calculate u(ℓ, t) based on two factors: whether a productive decision is possible, in prin-

ciple, based on the last ℓ stimuli, and whether the organism actually has learned to make this

decision. To formalize the first factor, we denote by f(ℓ) the fraction of sequences of length ℓ in

the environment that contains sufficient information for a productive decision. Note that a

sequence that contributes to f(ℓ) also contributes to f(ℓ + 1): if a productive decision is possible

using the last ℓ stimuli, then it is also possible using the last ℓ + 1 stimuli. In summary, f(ℓ)
increases monotonically with ℓ and describes how increasing decision depth increases the

organism’s potential to make productive decisions. The extent of this increase is determined

by the temporal distribution of information (see examples below).

To formalize how organisms learn productive decisions, we first assume no innate knowl-

edge, such that u(ℓ, 0) = 0. Let τ be the number of experiences needed to learn a single produc-

tive decision, and let N(ℓ) be the number of sequences of length ℓ that can be encountered. We

assume that u(ℓ, t) increases at each time step according to:

uð‘; t þ 1Þ ¼ uð‘; tÞ þ
1

tNð‘Þ
f ‘ð Þ � u ‘; tð Þ½ � ð2Þ

The motivation for Eq 2 is as follows. The maximum that u(ℓ, t) can increase at any time t is

1/N(ℓ), because at time t the animal can learn a productive response to at most one out of N(ℓ)
sequences, and becaue u(ℓ, t) is the fraction of sequences with a known productive response.

This maximum increase, however, is typically not realized. First, learning a response requires τ
experiences, such that the average increase in one experience is only 1/τ of the maximum. Sec-

ond, u(ℓ, t) can increase only if a productive response is not already known to the sequence

experienced at time t, and the probability of this happening is f(ℓ) − u(ℓ, t).
The nonhomogeneous first-order linear recurrence (in t) in (2) is solved through standard

techniques using the initial condition u(ℓ, 0) = 0. The solution is

uð‘; tÞ ¼ f ð‘Þ 1 � 1 � 1

tNð‘Þ

� �th i
. Inserted into (1) this yields

Uð‘;TÞ ¼ f ð‘Þ T � tNð‘Þ 1 � 1 �
1

tNð‘Þ

� �T
 !" #

: ð3Þ

To study the optimal decision depth ℓ, we need concrete assumptions for N(ℓ) and f(ℓ). We

assume that sequences are formed by selecting randomly from a set of n stimuli (with
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replacement), yielding N(ℓ) = nℓ (Fig 1A). We also assume that f(ℓ) (the fraction of sequences

of length ℓ that admits a productive response) changes with ℓ in the following way:

f ð‘Þ ¼ 1 � r‘ ð4Þ

where 0< r< 1. This function increases with ℓ, meaning that increasing decision depth

increases the potential for productive decisions. However, when r is large (close to 1) the

increase is slow, enabling us to model environments that favor either small or large decision

depth.

Fig 1B and 1C shows that, under a majority of conditions, the maximum of U(ℓ, T) is

achieved for ℓ = 1. The main reason is that the number of possible sequences, nℓ, is very large

even for modest values of n and ℓ. This means that the cost of increasing ℓ is prohibitive even

when the number of learning experiences is large. For example, with T = 10, 000 learning expe-

riences, ℓ = 2 is favored over ℓ = 1 only when n< 20 (Fig 1C), which is exceedingly small com-

pared to the number of stimuli realistically encountered by animals.

Since not all of the N(ℓ) = nℓ theoretically possible sequences can be realized, one may scale

this number by some constant factor α. However, as we see in Eq (3), N(ℓ) always occurs scaled

with τ, so we may integrate the α-scaling of N(ℓ) into the existing τ-scaling. In the S1 File, an

analysis of the effect of varying τ to this analytical model can be found.

To further illustrate the combinatorial explosion and resulting learning costs, we have also

simulated learning scenarios where learners have varying decision depths. In the learning sim-

ulations, similarly to the analytical model, the decision depth ℓ determines the length of the

sequence of recently perceived stimuli that are considered when making a decision (see the

Methods section for details). We call the learners representation of sequences a Depth-ℓ repre-

sentation [89].

Simulations show that learning is initially much faster with smaller decision depths (Fig 2),

and results correspond qualitatively well to those of the analytical model. This is due to the fact

that, just like in the analytical model, the number of sequences that the individual needs to

learn to respond to grows exponentially when decision depth ℓ increases.

In the simulated examples we have used conservatively small worlds, containing between 0

and 30 stimuli (Figs 1 and 2A), while most animals need to learn about many more stimuli. If

Fig 1. Costs and benefits of considering sequential information in learning and decision making. Costs and benefits of considering

sequential information in learning and decision making. a: Parameter description for the model. b: The utility function U(ℓ, T) visualized for

sample values of T with n set to 12. c: Optimal decision depth ℓ when T and n vary. In both (a) and (b) r is set to 0.5 τ is set to 10. For

visualization of the effect of variation in r and τ, see S1 File.

https://doi.org/10.1371/journal.pcbi.1011702.g001
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we increase the number of stimuli to 500, still a conservative number, we see that after around

5, 000 trials, a Depth-1 representation supports optimal responses to approximately 75% of the

sequences it encounters, while it takes a Depth-2 representation over 80, 000 trials, i.e. 16 times

as long, to reach the same performance. The analytical model and simulations both point to

the learning costs of decision depths of ℓ> 1, that may potentially prevent sequence represen-

tation from evolving. They also show that remarkably long learning times are required to over-

come these costs.

Approximate sequence representations can decrease learning costs

The result that learning about stimulus sequences is too costly to be practical is counterintui-

tive, because many animals are sensitive to stimulus sequences to some extent, and because

stimulus sequences can be very informative in natural environments. For example, a bird can

continue to pursue a bug that has disappeared under a rock, even if now it can only see the

rock. We suggest that animals, in general, represent sequences approximately as a compromise

between avoiding learning costs and retaining information. The combinatorial cost of learning

stimulus sequences can be reduced by ignoring the order in which stimuli occur, and simply

consider the identity of the last few stimuli [25]. A strategy that reduces combinatorial costs in

a similar way and at the same time contains some sequential information is a “trace memory”

representation. This representation has no definite length, rather, stimuli farther back in the

past are remembered more faintly. There is no explicit indication of when a stimulus has

occurred, but because of the exponential fade of the memory traces, there is a positive correla-

tion between the strength of the memory trace and the recency of the perception of the stimu-

lus. The trace memory is well documented, and it is surprisingly powerful, including a limited

ability to support discrimination between stimulus sequences that fits with animal data [23,

90–92]. This is because it focuses on current stimuli and at the same time allows information

about the immediate past to be recruited when needed. In the following learning simulations

Fig 2. Performance of Depth-ℓ representations of stimulus sequences in environments of different sizes. The x-

axis represents the time-steps or learning opportunities and the y-axis represents the performance measured after a

given number of time-steps, as described in the methods section. a: Learning in an environment consisting of 20

different stimuli. b: Learning in an environment consisting of 500 different stimuli. In both environments, the rate of

increase of information with respect to the increase of ℓ is 0.5 (approximating the parameter setting r = 0.5 in the

analytical model). However, the information increase ceases when ℓ> 4, as we are only including Depth-1 − 4

representations in the simulations. The learning rate in the simulations approximates τ = 10 in the analytical model.

https://doi.org/10.1371/journal.pcbi.1011702.g002
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we compare the efficiency of a trace memory representation (see the Methods section for

details) to the previous Depth-ℓ representations.

We simulate learning in three environments that differ in the temporal distribution of

information (Fig 3A). If all information is in the last stimulus, the Depth-1 representation, that

only considers the last stimulus, is naturally the most efficient learner, but the difference

between Depth-1 and a trace memory is very small (Fig 3B). This is because the last stimulus is

represented with greater intensity than the other stimuli by the trace memory, making it easy

for the trace memory to learn to ignore the previous noise stimuli. As soon as some informa-

tion is in the past, the approximate sequence representation of the trace memory is more effi-

cient than the accurate Depth-ℓ sequence representations. Depth-ℓ representations generate

very high learning costs as ℓ increases, in correspondence with our previous cost-benefit analy-

sis. An even information distribution over four time steps clearly favours trace memory (Fig

3C), and even when all information is four steps back in time, a trace memory is much more

efficient than a Depth-4 representation Fig 3D). The efficiency of trace memory may explain

why most animals appear to adopt similar memory strategies [70]. In conclusion, a trace mem-

ory is a powerful and productive compromise between information accuracy and learning effi-

ciency that may serve most needs in nature, and that may potentially prevent more accurate

sequence representations from evolving.

Evolution of accurate sequence representations

Despite its efficiency, a trace memory has several limitations that makes it insufficient for

human language and other mental abilities that require accurate sequence representations. A

trace memory is not useful to learn about longer sequences and it has difficulties with informa-

tion that is tied to the relative position of stimuli. For example, discriminating between (A, B)

vs. (B, A), is important for comprehending the meaning of linguistic expressions at all levels,

from phonetics to discourse (see Table 1). The sequences (A, B) and (B, A), however, can

Fig 3. Performance of Depth-ℓ and trace representations of stimulus sequences in environments that vary in the temporal distribution

of information. The number of stimuli (including informative and uninformative stimuli) is 66 in all environments. The trace decay rate θ =

0.5. The x-axis represents the time-steps or learning opportunities and the y-axis represents the performance measured after a given number

of time-steps, as described in the methods section. a: Examples of environments in which productive decisions depend on the last stimulus

only (top) or on the last two stimuli (bottom).✲ indicates uninformative stimuli selected at random for each pattern;● and◯ indicate

stimuli whose identity determines the correct output. 1 and 0 indicate whether a response is productive or not. b: Learning in an

environment of 32 sequences in which only the last stimulus is informative. c: Learning in an environment of 32 sequences in which all four

temporal positions are equally likely to be informative. d: Learning in an environment of 32 sequences in which only the first of the four

temporal positions is informative.

https://doi.org/10.1371/journal.pcbi.1011702.g003
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generate similar traces depending on stimulus duration, thereby preventing learning to tell the

two sequences apart. For example, a long A followed by a short B can result in a similar repre-

sentation to a short B followed by a long A, so that recovering the order of A and B may be

impossible [23]. Although structure is often more important than order in language [4, 6, 93],

representing order is necessary for establishing the structure of many linguistic expressions.

How could a machinery evolve, that represents input sequences with enough precision to sup-

port language? Two requirements have to be fulfilled. First, such a machinery must develop a

sensitivity towards the relative position of stimuli. Second, learning costs must be kept lower

than those of Depth-ℓ representations, for the combinatorial reasons shown in the above

analyses.

In order to test if the extreme learning costs that come with Depth-ℓ representations can be

reduced by an accurate but more flexible sequence representation, we complement Depth-ℓ
with the ability to represent all substrings of length < ℓ. A Flexible sequence representation of

the stimulus sequence (A, B, C) includes the representation of the individual stimuli A, B, and

C and the combinations (A, B), (B, C), and (A, B, C) (for more details, see the Methods sec-

tion). The Flexible sequence representation echoes suggestions that humans can encode

“chunks” of information of different lengths within the limits of working memory [25, 94–98].

Furthermore, if sequence representation and flexible chunking are used recursively, they allow

for processing of hierachical linguistic structure [99]. For a summary of all the different simu-

lated representation strategies, see Fig 4.

To evaluate the ability of a Flexible sequence representation to learn to recognize sequences

with accuracy and efficiency, we simulate learning in an environment where the sequence (A,

B) requires a different response from (B, A) (Fig 5E). In this environment, A and B also occur

alone and intermixed with other stimuli, so that the sequences (A, B) and (B, A) cannot be

identified by their first or last element alone. Here, a trace memory hardly learns to respond

productively at all. While both Depth-ℓ and Flexible sequence representations support discrimi-

nation of (A, B) from (B, A), the Flexible sequence representation generates much faster learn-

ing (Fig 5E). Its flexibility allows for identification and symbolizing of relevant sub-sequences,

so that they can be recognized independently of their temporal position. At the same time, it

supports learning to ignore sub-sequences that are uniformative. For example, the Flexible
sequencerepresentation, differently from the original Depth-ℓ representation, perceives the

similarity between the sequences (A, B, 0) and (0, A, B).

In four additional learning simulations we vary the probability p of information being in

sequences and the probability 1 − p of information being in single stimuli (Fig 5A, 5B, 5C and

5D). When more information is in single stimuli, the Flexible sequence representation suffers

higher learning costs than a trace memory, due to the fact that it considers a higher number of

representations (see Fig 5). It is, however, much less costly than the Depth-ℓ representation,

Table 1. Sequential order and meaning in language.

Linguistic unit A, B B, A
phoneme [it] (eat) [ti] (tea)

syllable [Ə.raƱnd] (around) [raƱnd.Ə] (rounder)

word killer whale whale killer

sentence I entered the house. It was cold. It was cold. I entered the house.

Examples from English of linguistic expressions or parts of discourse with two elements whose order determines

meaning, at the phoneme, syllable, word and sentence level. It is mainly words, or morphemes, that constitute the

basis for linguistic compositionality, but sequential order is important at both lower and higher linguistic levels.

https://doi.org/10.1371/journal.pcbi.1011702.t001
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indicating that its ability to ignore irrelevant information trumps the fact that it generates

more representations. In a pre-human evolutionary scenario without culture on a grand scale,

we may assume that the order of stimuli is less important than the stimuli themselves, and

information in sequences thus less frequent than information in single stimuli. In an example

of such an environment, where one forth of the information is in sequences (Fig 5B), the Flexi-
ble sequence representation can have an evolutionary advantage over a trace memory, but only

if learning time is relatively long.

Methods

To explore a potential first step in the evolution of language we use both analytical modelling

and computer simulations of learning. Here we describe the method of the computer simula-

tions and briefly the relation between the simulations and the analytical model.

Simulations

In the computer simulations, learning occurs by a simple and traceable error-correction func-

tion, theoretically equivalent to current models of learning [100–102]. A deep network is not

Fig 4. Summary of representation strategies. This illustrates how an input sequence (A, B) is represented differently by four strategies, and thus generates

different representations on which each respective decision on response is based. The Trace strategy represents B and also a trace of A that has faded in

intensity from 1 to 0.5 according to the decay rate θ = 0.5. The Depth-1 strategy only represents B at the time of decision. The Depth-2 and Flexible Sequence
strategies represent A and B with full strengths and their order, at the time of decision. The Depth-2establishes a unique representation of the full sequence

(A, B). The Flexible Sequence strategy establishes the same representation of the sequence (A, B) but also represents sub-sequences, here the single stimuli,

thus enabling decision making based on any of these representations.

https://doi.org/10.1371/journal.pcbi.1011702.g004
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necessary for our aims, as we are interested in the process of learning to discriminate, and not

stimulus generalization. We simulate learning about a binary decision, such as deciding

whether to eat or not eat a bug based on feedback about it being edible or not. In the simula-

tions, an organism interacts with an environment and learns at each interaction. The interac-

tions occur at discrete time-steps, and a simulation runs in a pre-assigned number of time-

steps (or learning opportunities). At each time-step the agent is exposed to a sequence of sti-

muli, performs a behavior as a response to the sequence, and learns from the consequence of

that behavior. Decision-making and learning occur according to equations that are well

grounded in experimental psychology and machine learning [103–106]. The learning simula-

tions and the underlying equations are specified in S1 File. After a number of time-steps the

performance of the agent in the environment is measured. The analytical model which is pre-

sented below follows similar principles when analysing the learning costs of sequence repre-

sentation in the sense that learning occurs in time-steps governed by mathematical

assumptions about the rate of learning and that learning occurs in an environment where the

temporal distribution of information is specified. In the simulations, the following is per-

formed at each time-step:

1. A sequence is drawn from the possible sequences in the environment (see The environments
below).

2. An internal representation of this sequence is created. This representation differs between

the memory strategies (see Representations below).

3. The agent responds to the sequence using the response function described in Representa-
tions below, and as a consequence receives a reinforcement value that depends on the

response and whether the sequence is rewarding or not (see The environments below).

Fig 5. Performance of Flexible Sequence, Depth-4 and Trace representations, in environments with varying proportions of

sequentially structured information. For the Flexible Sequence and Depth-4 representations ℓ = 4. For the trace representation θ = 1/2.

The probability of encountering information in sequences is determined by p in each environment. Sequential information is contained in

the two sequences (A, B) and (B, A) that are equally distributed over the three time steps where they fit. All other information is in single

stimuli and is equally distributed over the four time steps. The x-axis represents the time-steps or learning opportunities and the y-axis

represents the performance measured after a given number of time-steps, as described in the methods section. a: Learning in an

environment where information is encountered in sequences with p = 0 and all information thus is in single stimuli. b: Learning in an

environment where information is encountered in sequences with p = 0.25. c: Learning in an environment where information is

encountered in sequences with p = 0.5. d: Learning in an environment where information is encountered in sequences with p = 0.75. e:

Learning in an environment where all information is encountered in sequences.

https://doi.org/10.1371/journal.pcbi.1011702.g005
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4. This reinforcement value is used to update the associative strengths for this response [102]

(see also Equation 2 in the S1 File).

5. Every 100 steps, the agent’s performance is measured. This is done by “freezing” the simula-

tion time-steps and letting the agent respond to a fixed set of “test sequences”. The fraction

of correct responses to these test sequences is measured and recorded. The exposure to the

test sequences does not affect the associative strengths that are updated in point 4.

Then the next sequence is drawn, and so on.

The environments

An environment consists of a number of informative stimuli and a number of noise stimuli.

The set of possible sequences of these stimuli in the environment is constructed through a

number of template sequences. Each position in a template sequence is either an informative
stimulus or a noise (noninformative) stimulus. For example, each sequence of symbols in Fig

3A represent a template sequence in an environment with two informative stimuli ● and◯
where✲; indicates a noise stimulus. Thus, the template ✲✲✲● represents all sequences

starting with three noninformative stimuli followed by one of the informative stimuli.

In each time-step of the simulation, one of the template sequences is picked uniformly at

random, and each of its noise positions are replaced by one of the noise stimuli, chosen uni-

formly at random. Each template sequence is either rewarding or nonrewarding. These are

constructed such that exactly half of the template sequences are rewarding and half

nonrewarding.

The agent

The agent’s behavior repertoire is limited to the two behaviors go and no-go. The agent receives

the highest reinforcement value (5) when responding to a rewarding sequence, and the lowest

(−4) when responding to a nonrewarding sequence, and no reinforcement (0) when not

responding (regardless of stimulus sequence). The negative reinforcement value represents the

cost of performing a behavior that does not render any utility. This cost is naturally lower than

the utility gained by peforming the correct behavior.

Representations

In this paper we evaluate different strategies for sequence representation. Below follows a for-

mal description of the representations considered in the manuscript. Each representation

strategy has a particular way of representing the incoming stimulus sequence. This representa-

tion is used in the decision function and in the equation that updates the associative strengths

when learning.

The representation feeds information into the decision function and the memory updating

equation. We here define these equations for the different representations. In our simulations

the sequences have length four. Thus, consider a stimulus sequence D, C, B, A. Each represen-

tation strategy represents this sequence as a set P of perception elements. Each element p = (K,

x) 2 P consists of (I) a subsequence K of the stimulus sequence D, C, B, A, and (II) an intensity

x of that subsequence. In the representation Trace, each subsequence is simply one of the stim-

ulus elements (A, B, C, or D), with a geometrically decaying intensity. In Depth-ℓ, there is only

one perception element where the subsequence is the entire percieved sequence. In Flexible
sequence of depth-ℓ, all possible subsequences are present in P. We have the following percep-

tion elements after experiencing D, C, B, A.
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• Trace: (D, θ3), (C, θ2), (B, θ), (A, 1)

• Depth-1: (A, 1)

• Depth-2: (BA, 1)

• Depth-3: (CBA, 1)

• Depth-4: (DCBA, 1)

• Flexible sequence of depth-4:

ðDCBA; 1Þ; ðDCB; 1Þ; ðCBA; 1Þ;

ðDC; 1Þ; ðCB; 1Þ; ðBA; 1Þ;

ðD; 1Þ; ðC; 1Þ; ðB; 1Þ; ðA; 1Þ

General discussion

Language requires accurate sequence representation. Here, we have shown that such represen-

tations are unlikely to evolve because they incur high learning costs due to a combinatorial

explosion associated with sequential information. In addition, a trace memory (found in most

animals) [23] represents an efficient solution for taking past information into account, while

avoiding the abovementioned combinatorial explosion. In situations where representing the

exact order of arbitrary stimuli is not necessary, as may be mostly the case for non-human ani-

mals, a trace memory is more efficient than more accurate sequence representation. However,

if information is structured sequentially so that the order of stimuli is meaningful, a trace

memory proves to be insufficient and a more accurate sequence representation is necessary.

The learning costs induced by the combinatorial explosion still need to be avoided, making

strategies for excluding unnecessary information important. Learning to symbolize relevant

sequences, so that they can be easily recognized and remembered is one such strategy, and

learning to delete information of little interest from representations is another. A simple exam-

ple of a representation that allows for such strategies is a flexible sequence representation that

considers recently perceived sub-sequences, rather than considering the whole information

stream as one unique sequence. This flexible sequence representation can also be considered

cognitively plausible given that human working memory can process single elements as well as

different combinations of elements [96].

If a sufficiently large proportion of information is structured sequentially and an organism

invests heavily in learning, then this kind of flexible sequence representation may be favored

by natural selection. These conditions are unlikely to be fulfilled among animals but may have

occurred in human ancestors, considering that large primates learn throughout an extensive

juvenile period and that, for example, manufacturing and use of tools may have increased the

amount of sequentially structured information in early human evolution [25]. Tentatively, the

evolution of accurate and flexible sequence representation may have set the stage for the emer-

gence of language and other mental phenomena that underlie cumulative culture, for instance

planning, thinking and sharing symbols [12, 23], in their turn favouring increased learning

time. Such a gene-culture co-evolutionary scenario is compatible with life-history evolution of

a uniquely long human childhood [107].

Previous models of co-evolution of language and cognition tend to give a larger role to biol-

ogy. It has been suggested that specific learning biases evolved to adapt to characteristics of

existing languages [9, 108]. Others have applied evolutionary game theory to explore how an

expanding vocabulary generated by the capacity for combining sounds creates a selective pres-

sure for compositional grammar [109–111]. These proposals have in common that they

assume unusually stable linguistic environments, and postulate that specific genetic
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adaptations facilitating language acquisition would evolve in such environments. We propose

a more general and plausible co-evolutionary trajectory relying on sequence representation as

a first crucial step, where extended learning time is an additional adaptation that facilitates the

acquisition of increasingly complex language, as well as other culture. Furthermore, while we

agree with the idea of compositional grammar emerging as a solution for managing the combi-

natorial explosion generated by a large vocabulary, we propose that this emergence would

result from cultural and not genetic evolution, relying upon the foundation of accurate and

flexible sequence representation.

In the longstanding debate on whether the difference between humans and other animals is

of a degree or a kind [112, 113], our results favour the hypothesis that humans evolved a new

kind of sensitivity to sequential order, a small but significant step, that could give rise to the

gradual emergence of mental skills and language.

Supporting information

S1 File. Supplementary material. The supplementary material contains some additional

information on the analytical model and the computer simulations presented in this manu-
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