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Abstract

The Rescorla and Wagner (1972) model is the first mathematical theory to explain associative

learning in the presence of multiple stimuli. It uses the concept of associative strength to predict

behavior, but does not explicitly connect the two. This study proposes that behavior can be

described by a collection of Poisson processes, each with a rate proportional to an associative

strength. The model predicts that the time between behaviors will follow an exponential or

hypoexponential distribution. This prediction is supported by two data sets on autoshaped and

instrumental behavior in rats.
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How Associations Become Behavior

Introduction

The Rescorla and Wagner (1972) model is the first mathematical model to account for

associative learning in the presence of multiple stimuli, such as in blocking, overshadowing, and

relative validity. It is hard to overstate its success in balancing simplicity and effectiveness, and in

inspiring research (Miller, Barnet, & Grahame, 1995; Pearce & Bouton, 2001; Siegel & Allan,

1996).

The main theoretical construct of the Rescorla and Wagner model is associative strength:

a number that quantifies the intuitive notion of association. With their famed learning equation,

Rescorla and Wagner spelled out a rigorous theory of how associative strength changes with

experience. Yet, when linking associative strength to behavior, they assumed merely that larger

values yield stronger or more frequent behavior. This was sufficient to account for many learning

phenomena (Bouton, 2016; Pearce, 2008), but it weakened the model’s connection with behavior

and tempered earlier ambitions to predict response probabilities precisely (Bush & Mosteller,

1955; Estes, 1950). Most subsequent models have followed Rescorla and Wagner, resulting in

relatively little work on how associative strength relates to behavior. Yet, associative strength

cannot be said to accurately capture how learning changes an animal’s internal state, if it cannot

be connected firmly to behavior.

Here we attempt to link associative strength with the rate at which behavior occurs,

drawing inspiration from quantitative behavior analysis and connecting it with associative

learning theory (Killeen, Hall, Reilly, & Kettle, 2002; Sanabria, Daniels, Gupta, & Santos, 2019).

Formally, we explore the hypothesis that each associative strength influences the rate of a Poisson

process that generates behavior (see Methods). This hypothesis may apply to stimulus-response,

stimulus-stimulus, or other associations, and to learning theories other than Rescorla and

Wagner’s. It is about how associations become behavior, not how they are learned or what entities

they link. In other words, the Poisson hypothesis makes precise predictions about behavior under

constant conditions, including relevant factors such as stimuli, associative strength, and
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motivation. However, the hypothesis is silent about what representations are associated and what

causes associations to change. For this reason, we do not consider learning below. Rather, we

evaluate the Poisson hypothesis by looking at steady-state behavior (Blough, 1975). We consider

the relationship between the Poisson hypothesis and learning in the Discussion.

A potential connection between Poisson processes and behavior was suggesteed to us by

data on stimulus summation in rabbit Pavlovian conditioning. Here, the probability of a

conditioned response (CR) to the joint presentation of two conditioned stimuli (CSs) is

consistently smaller than the sum of CR probabilities to each CS (Kehoe, 1982, 1986; Kehoe &

Graham, 1988; Kehoe, Horne, Horne, & Macrae, 1994). If A and B are the CSs, and pX is CR

probability to X , many experiments fit the formula

pAB = pA + pB − pA pB (1)

The term −pA pB seems hard to reconcile with Rescorla and Wagner’s (1972) assumption that

vAB = vA + vB (where vX is the associative strength of X) and, more generally, with the

widespread assumption that vAB is a linear function of vA and vB (Pearce, 1987; Wagner, 2008).

However, Ghirlanda (2022) showed that vAB = vA + vB is compatible with Equation (1) if (and

only if) the relationship between associative strength and CR probability has the form

pX = 1− e−bvX (2)

with b a positive constant. In fact, using vAB = vA + vB in Equation (2) yields

pAB = 1− e−b(vA+vB) (3)

= 1− e−bvAe−bvB

= 1− (1− pA)(1− pB)

which simplifies to Equation (1).

Ghirlanda (2022) justified Equation (2) from empirical data and normative arguments, but

did not provide a mechanistic model for it. The link with Poisson processes stems from the

serendipitous observation that, in the experiments yielding Equation (1), a CR was recorded when
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at least one response occurred during CS presentation. If responses are generated by a Poisson

process with rate bv, then the probability that no response is observed during the CS is e−bv

(where b includes the duration of the CS as a factor, see Equation (5) in Methods, with n = 0).

Thus the probability of at least one response is the complement 1− e−bv. In summary, a Poisson

process may explain the origin of Equation (2), which, in turn, is necessary to reconcile

associative models with data from summation experiments.1

In Methods, we flesh out the idea that associative strengths influence behavior through

Poisson processes. We show that it is compatible with standard associative learning theory and

derive testable predictions from it. In Results, we show that the predictions are supported by data

about autoshaped and instrumentally conditioned behavior in rats. In the Discussion, we consider

related models from behavior analysis, open questions, and implications for animal learning and

cognition.

Methods

The Poisson model

Let v be an associative strength influencing a behavior in a given stimulus situation. We

consider the hypothesis that the behavior occurs according to a Poisson process with rate

proportional to v. A Poisson process is a mathematical model for events (here, behaviors) that

occur at random times. The process has one parameter, a positive number called the rate. With

rate a, the probability of one event occurring in any small (infinitesimal) interval dt is a×dt, and

the probability of two or more events is negligible. Our hypothesis is then that a = cv, where c

summarizes non-associative factors, such as motivation, which we assume constant in this paper.

This hypothesis formalizes the intuition, present already in Rescorla and Wagner (1972), that a

larger associative strength corresponds to a higher probability of the relevant behavior.

A Poisson process has two basic properties (Feller, 1971; Resnick, 1992). First, the times

between consecutive events, referred to as “waiting times,” are distributed exponentially with rate

1 Ghirlanda (2022) shows that Equation (2) is compatible also with summation data for which Equation (1) does not

hold.
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a. These are often referred to as inter-response times (IRTs) in psychology. Formally, the

probability density of a waiting time t is:

pa(t) = ae−at (4)

with mean time 1/a and variance 1/a2. Second, the number of events occurring during any

interval of length T follows a Poisson distribution:

Pra(n events in time T ) = (aT )n

n! e−aT (5)

with mean and variance equal to aT . Of note, Equations (4) and (5) hold only for Poisson

processes, so that either can be used to test whether data follow a Poisson process. Below we use

Equation (4) because it does not depend on defining a fixed length for observations, which is not

trivial in the data we analyze because different responses are intermixed. For example, it would

be incorrect to define a rate of lever pressing for a rat by simply counting the number of lever

presses in a fixed-duration trial, because during a trial the rat is likely to experience conditions

with different rates, such as early vs.\ late in the trial or inside vs.\ outside the food magazine. In

addition to Equation (4), we also check the “memoryless” property of Poisson processes: at any

time t, the waiting time distribution is the same regardless how long ago the last event occurred.

This property implies that consecutive waiting times are uncorrelated. It is a necessary

consequence of the Poisson hypothesis, although it also holds for other stochastic processes

(Feller, 1971; Resnick, 1992).

For brevity, we say that a behavior “is Poisson” if it follows a Poisson process. The next

sections show that the Poisson model fits naturally with how associative strengths are commonly

understood.

Stimulus control

Stimulus control refers to changes in behavior caused by changes in stimulation

(Ghirlanda & Enquist, 2003; Mackintosh, 1974). Associative learning theory analyzes stimulus

control by assuming that stimuli are perceived as arrays of elements that can be shared across
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stimuli (Blough, 1975; Pearce, 1987; Rescorla & Wagner, 1972; Wagner, 2008). Most commonly,

a stimulus’ associative strength is broken down into fractional associative strengths attributed to

each of its elements.2 The Poisson model is consistent with this approach if we assume that

elemental associative strengths combine to obtain a Poisson rate. Thus two stimulus elements with

associative strengths v1 and v2 would yield a Poisson process with rate proportional to v1 + v2.

The argument extends to elements with continuous activation. If x = {x1, . . . ,xs}

represents the activation of s elements, we can calculate an aggregate Poisson rate as

v(x) =
s

∑
i=1

xivi (6)

which yields the standard associative theory of stimulus control (Blough, 1975; Ghirlanda, 2015;

Wagner, 2008). Inhibition can be accommodated by allowing elemental associative strengths to

be negative, and assuming that only overall positive rates give rise to behavior (Ghirlanda, 2022).

Timing of behavior

Learned behavior occurs at specific times, such as a protective Pavlovian CR that occurs

immediately before a noxious US. If Poisson processes are memoryless, triggering behavior

regardless of elapsed time, how can they control timed behavior? This puzzle can be resolved

with time-varying stimulus representations, i.e., allowing element activation in Equation (6) be a

function of time, such as time since CS onset. An associative mechanism can leverage such a

representation by tuning the associative strengths of each stimulus element in such a way that

total associative strength is maximal when a response should be produced. As with Equation (6)

itself, this approach is common in associative learning models of timing (Buhusi & Schmajuk,

1999; D. V. Buonomano & Karmarkar, 2002; Enquist & Ghirlanda, 2005; Grossberg &

Schmajuk, 1989; Machado, 1997).

2 Alternatively, associative strength is attributed to whole stimuli, and elemental composition is used to compute how

associative strength generalizes across stimuli (Pearce, 1987). The two approaches are equivalent (Ghirlanda, 2015,

2018).
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Choice

When two or more behaviors are considered, we assume that each behavior follows an

independent Poisson process with its own rate. Which behavior occurs next depends then on

which process first generates an event. We call this “Poisson choice.” This simple model has two

appealing properties.

First, Poisson choice agrees with the matching law (Baum, 1974; Herrnstein, 1974),

assuming that Poisson rates are proportional to reinforcement obtained. In fact, if behaviors 1 and

2 are independently Poisson with rates cv1 and cv2 determined by underling associative strengths,

then they occur in the ratio v1/v2 (with n behaviors, behavior i occurs with frequency

vi/(v1 + . . .+ vn); Feller 1971; Resnick 1992). Deviations from the basic matching law can be

accommodated following Baum (1974), i.e., assuming that rates are not determined by

reinforcement alone.

Second, Poisson choice is robust to how we categorize behavior. Suppose a rat can press a

lever with its paws or with its snout, but we cannot or do not want to tell the two apart. In this

case, our observations of lever pressing will still be Poisson, with rate proportional to the

underlying associative strengths v1 + v2 (Feller, 1971; Resnick, 1992).

Stimulus control and choice can be combined by assuming that there is a separate set of

associative strengths for each possible behavior, corresponding to multiple copies of Equation (6)

with, typically, different values of v1, . . . ,vs.

Multi-step behavior

In most experiments, we do not record every behavior. For example, a rat must approach a

lever before being able to press it, but typically we only record presses. In this case, the

distribution of times between lever presses is not exponential even if both behaviors are Poisson.

This distribution can be calculated as follows.

Suppose approaching and pressing are Poisson with rates a1 and a2. Observing a lever

press at time t implies that the rat had previously approached the lever at a time x < t, and that the

subsequent waiting time for pressing was t − x. According to Equation (4), the probability of a
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waiting time of x for approaching followed by a waiting time of t − x for pressing is

Pr(approach at x < t followed byand press at t) = pa1(x)pa2(t − x) (7)

The time x is unknown because approach is not observed, but over many observations it is

distributed exponentially. We can thus consider all possible values of x compatible with a press at

t, each with its own probability, in order to obtain the probability of a press at t. Formally, this

means integrating Equation (7) over x, between 0 and t:

Pr(press at t) =
∫ t

0
pa1(x)pa2(t − x)dx (8)

=
∫ t

0
a1e−a1xe−a2(t−x)dx (9)

=
a1a2

a2 −a1

(
e−a1t − e−a2t) (10)

=
a2

a2 −a1
pa1(t)+

a1

a1 −a2
pa2(t) (11)

Repeating the same reasoning for a sequence of m behaviors leads to

Pra(behavior at t) = ∑
m
i=1 pai(t)∏

m
j=1
j ̸=i

a j
a j−ai

(12)

where a = {a1, . . . ,ak}). Equation (12) is known as the “hypoexponential” distribution.3 It

reduces to Equation (4) when m = 1. We fit this distribution to data as described in the next

section.

It is also possible to consider observations that may arise from multiple sequences of

behaviors. For example, if we add a “retreat” behavior to our analysis of lever pressing, then

many sequences become possible: approach-press, approach-retreat-approach-press, and so on.

Each of these sequences contributes to the probability of observing a press at t. We touch upon

these situations in the Discussion (for a complete treatment, see Sanabria et al., 2019; Zucchini,

MacDonald, & Langrock, 2016).

3 When two rates are equal and the denominator a j −ai is zero, the correct probability distribution can be obtained by

a Taylor expansion of the exponentials in pai(t) and pa j(t), followed by a limit a j → ai.
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Code and data

Code to reproduce our analyses is available at https://osf.io/7hgyf/. We analyze

two data sets. The first consists of rat autoshaping data from Iliescu, Hall, Wilkinson, Dwyer, and

Honey (2018). It is available at https://osf.io/ka9w3, and with our code in pre-processed

form suitable for our analyses. The second data set consists of rat instrumental conditioning data

from George, D. N. (unpublished raw data). Data for 16 subjects are available with our code, data

for 32 more subjects are available upon request. Experimental procedures are described below as

necessary.

We fit the Poisson model to empirical waiting time distributions using

maximum-likelihood estimation, that is, we choose the parameters of the distribution in

Equation (12) to maximize the probability that the observed data arise from the distribution.

Given k observed waiting times w = t1, . . . , tK , this probability is

L(t,a) =
k

∏
i=1

Pra(behavior at ti) (13)

where each probability in the product is computed using Equation (12). We consider the number

of terms m in Equation (12) as a free variable, determined using the Bayesian information

criterion (BIC, see James, Witten, Hastie, & Tibshirani, 2013). This is a way of comparing

models that penalizes models with more parameters, unless the yield a substantially better fit. We

start the fitting process with m = 1 (the exponential distribution) and increase m so long as BIC

values improve. After fitting, we sort the resulting rates in increasing order to aid discussion,

although the Poisson model is insensitive to order. (It is the same to wait for a slow process first

and a fast process second, or vice-versa.)

Note that, in order to estimate the rate a in Equation (13), we assume that this rate is

constant across the data included in the fit. Because response rates typically vary during an

experiment, we try to identify subsets of the data where event rates are at least approximately

constant. In this exploratory study, we do this simply by inspecting the data visually, as detailed

in Results for each data set.

https://osf.io/7hgyf/
https://osf.io/ka9w3
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As a test of the Poisson model, the estimation process is robust to false positives and

negatives. A Poisson behavior remains Poisson if equipment misses a random fraction q of

occurrences, in which case we would observe a rate of (1−q)a. Similarly, if we spuriously detect

behavior with Poisson rate a0, the behavior remains Poisson with rate a+a0. In both cases, we

can still test the Poisson hypothesis despite estimating a biased rate.

We conducted our analyses with R version 4.2.2 (2022-10-31) (R Core Team, 2022)

within the Emacs ESS and org-mode environments, versions 18.10.3snapshot and 9.6.4 (Rossini,

Heiberger, Sparapani, Maechler, & Hornik, 2004; Schulte, Davison, Dye, & Dominik, 2012). We

used packages data.table version 1.14.0 for data manipulation (Dowle & Srinivasan, 2021), ascii

version 2.4 for output formatting (Hajage, 2020), and custom code for fitting the hypoexponential

distribution and BIC-guided model selection. Our implementation of Equation (12) is derived

from Baumgartner and Gatto (2014).

Results

To test the Poisson hypothesis, we analyze data about autoshaped and instrumentally

conditioned behavior in rats, comparing waiting times between consecutive behaviors to the

predictions of Equation (4) and its generalization to multi-step behavior, Equation (12).

Autoshaping

Iliescu et al. (2018) trained 32 rats in operant chambers for 12 40-trial sessions. On a

random half of trials, one of two retractable levers was inserted for 10 s, after which it was

retracted and food became available in the magazine. On the other trials, the other lever was

inserted, but no food was delivered. Thus the levers served as CSs for food delivery and

non-delivery. Each trial included 10 s before lever insertion, and 10 s after. Inter-trial intervals

(ITIs) varied uniformly between 10 and 50 s. No scheduled stimuli differentiated the pre-CS,

post-CS, and ITI periods. The times of lever presses, magazine entries, and magazine exits were

recorded. We consider the simple scheme of the rat’s behavior shown in Figure 1. The rat can be

either outside or (partly) inside the magazine. When outside, it can decide to enter the magazine,

to press the lever (when present), or to do “nothing,” by which me mean any behavior that is not
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recorded. When inside the magazine, the rat can decide to exit or do “nothing.” After pressing the

lever, it can press again, enter the magazine, or do “nothing.”

In testing the Poisson model, we are concerned with the distribution of waiting times for

the transitions between behaviors. For example, given that the rat is in the magazine, how is the

time until it exits distributed? The model predicts an exponential or hypoexponential distribution

for all waiting times, provided the hypothesis of constant rate parameters is met. However,

response rates generally vary both between and within trials. For example, there are more

magazine entries and lever presses right after the insertion of the lever that signals food than at

other times. To work with approximately constant rates, we first selected for analysis the last three

experimental sessions, in which overall response rates are approximately constant within subjects.

Then, within these sessions, we selected the following portions of each trial (see Fig. S1):

• For the entry-exit, we used data from non-reinforced trials, up to 40 s in the trial. This

includes the 10 s pre-CS period, 10 s CS period, the 10 s post-CS period, and the first 10 s of the

inter-trial interval, which was undistinguishable to the rat from the post-CS period. The remaining

of the inter-trial interval was discarded as the rate of behavior decreases substantially. These

intervals include times with and without the non-reinforced lever (which was present only

between 10 and 20 s). While this may affect event rates in principle, empirically there was no

systematic variation (Fig. S1, top left).

• For the exit-entry interval, we used non-reinforced trials up to 40 s in the trial, but we

excluded 2 s after lever insertion and removal because exit-entry intervals are longer at these

times (Fig. S1, top right). We also analyzed, separately, reinforced trials starting 5 s after lever

insertion and up to 40 s. (The first 5 s following lever insertion have much higher intervals

between entry-exit events, see Fig. S1.)

• For the lever-lever, lever-entry, and exit-lever, we used data from reinforced trials,

excepting 2 s following lever insertion, during which these behaviors have higher rate.

We excluded from analysis exit-entry rates on reinforced trials because there was no substantial

interval within a trial in which these rates are constant (Fig. S1, top right). We also excluded
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intervals involving the lever on reinforced trials, because these events are very few.

Magazine
entry

Magazine
exit

Lever
press

Figure 1

Possible transitions between the behaviors recorded by Iliescu et al. (2018), when a lever is

present in the operant chamber. Without a lever, the only possible behaviors are magazine entry

and exit.

Figure 2 shows that entry-exit intervals in non-reinforced trials follow the Poisson model

closely. For most subjects in Figure 2, a simple exponential distribution provides the best fit. For

a few subjects, a two-rate hypoexponential is slightly better than an exponential. Entry-exit

intervals in reinforced trials and exit-entry intervals in non-reinforced trials show a similar pattern

(see Supplementary Material).

Figure 3 shows a strikingly different pattern for the waiting times between consecutive

lever presses. These are generally well-described by a hypoexponential distribution with two or

three terms, often nearly identical. Waiting times for the exit-lever and lever-entry intervals show

a similar pattern (see Supplementary Materials). Table 1 shows that all of the intervals in Figure 1

are described quite well by an exponential or hypoexponential distribution.

The only systematic deviation from the Poisson model appears that, in entry-exit and

exit-entry data, small intervals are more frequent than predicted. For example, the first data point

is consistently above the model curve in Figure 2. There are at least two potential contributions to

this effect. First, rats may sometimes trigger the apparatus in rapid succession, for example, by its

whiskers, tail, or other body part crossing repeatedly the infrared beam that records magazine

entry and exit (Iliescu, A., pers. comm.). There are no excess short intervals in lever press data,
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consistent with lever pressing being harder to trigger accidentally. Second, it is often observed

that animals alternate high-rate and low-rate bouts of behavior (Brackney, Cheung, Neisewander,

& Sanabria, 2011; Killeen et al., 2002). When this is case, the assumption of constant rate under

which the Poisson model predicts an exponential distribution does not hold, and one would have

to analyze high-rate and low-rate bouts separately. In Iliescu et al.’s (2018)’s data, this does not

seem important. In fact, a mixture of high-rate and low-rate bouts implies a correlation between

successive waiting times, because overall short waiting times would cluster together within

high-rate bouts, and long waiting times within low-rate bouts. The data, however, show no

significant correlations (see Supplementary Material).

Instrumental conditioning

George, D. N. (unpublished raw data) rewarded lever pressing in three groups of 16 rats

on variable-interval schedules, with an average inter-reinforcement time of 30 s. The schedules

differed in the distribution of inter-reinforcement times (geometric, Gaussian, or rectangular),

which we ignore as it does not affect our results (see Supplementary Material).

George recorded the same behaviors as Iliescu et al. (2018), and we continue to use the

scheme in Figure 1. The waiting times distributions are also similar. Entry-exit and exit-entry

Table 1

Summary of Poisson model fits to the intervals between successive behaviors, in data from Iliescu

et al. (2018). R: Reinforced trials. N: Non-reinforced trials. r: Pearson’s correlation coefficient

between binned data and Poisson fits across 32 subjects. r̄: Median of r.

Interval r̄ r range

Entry-exit N 0.95 0.79–0.99

Exit-entry N 0.87 0.71–0.95

Exit-entry R 0.93 0.59–0.99

Lever-entry R 0.95 0.59–0.99

Lever-lever R 0.94 0.74–0.99

Exit-lever R 0.95 0.93–0.98
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waiting times are typically described by exponential distributions, while lever-lever, lever-entry,

and exit-lever waiting times by hypoexponential distributions. Model fits for the lever-lever

waiting times of subjects 1–16 are shown in Figure 4. See Supplementary Materials for the other

intervals. Table 2 mirrors Table 1 in showing that all of the intervals in Figure 1 are described

quite well by an exponential or hypoexponential distribution. Like in Iliescu et al.’s (2018)’s data,

we found no correlation between consecutive waiting times (Supplementary Material).

Nevertheless, we observe that the model often underestimates the peak of distributions involving

lever presses. Possibly, behavior involving the lever is not completely described in terms of

unvarying sequences, as we have assumed in our multi-step model, and one needs to consider that

engaging with and disangaging from the lever can occur in multiple ways (see Methods).

The structure of waiting times

Tables 1 and 2 show that the Poisson model fits the data well, but does it provide any

insight into behavioral processes? Table 3 shows that the number of terms in the fitted distribution

tracks the intuitive complexity of behaviors. Exiting the magazine takes place in a relatively

constant stimulus situation (the rat’s head is inside the magazine) with few behavioral options. In

~90% of cases, the waiting times are distributed exponentially. In the remaining cases, the best

fitting distribution has two rates, but the difference from an exponential is small because the

Table 2

Summary of Poisson model fits to the intervals between successive behaviors, in data from

George, D. N. (unpublished raw data). Legend as in Table 1.

Interval r̄ r range

Entry-exit 0.93 0.81–1.00

Exit-entry 0.92 0.78–0.98

Lever-lever 0.94 0.78–0.99

Lever-entry 0.92 0.15–0.98

Exit-lever 0.91 0.52–0.97



ASSOCIATIONS AND BEHAVIOR 16

second rate is much larger than the first (see subjects 21, 22, 30, 31 in Figure 2). The waiting

times for entering the magazine after having exited from it show a similar pattern, but two

(occasionally more) terms appear in about one third of cases. The resulting distributions are still

almost exponential in shape.

In contrast, waiting times involving the lever are rarely distributed exponentially

(transitions exit-lever, lever-entry, and lever-lever in Figure 1). The most common pattern is a

hypoexponential distribution with several, almost identical faster rates, and often one slower rate

(Figure 3 and Figure 4). The higher complexity of these distributions may reflect the fact that

engaging and disengaging with the lever is best analyzed as consisting of several steps, but we

cannot test this interpretation with the available data. That some rates are estimated to be nearly

identical suggests that they may correspond to the repetition of the same or similar behaviors.

Alternatively, some rates could pertain to internal processes underlying behavioral decisions.

Discussion

The Poisson model of response generation provides a quantitative hypothesis for how

associative strengths and other variables become behavior, that is, by influencing the rates of

Poisson processes. It is a bold hypothesis as it implies that inter-response time distributions can

Table 3

Number of terms in the best-fitting hypoexponential distribution for all subjects in Iliescu et al.

(2018) and George, D. N. (unpublished raw data). The “Lever press” column includes all

intervals involving the lever, see Figure 1. N: Number of data sets (for each interval, only

subjects yielding at least 50 data points were included).

Terms:

N 1 2 3 4 5 6 7

Magazine exit 80 71 9 0 0 0 0 0

Magazine entry 101 64 33 3 0 1 0 0

Lever press 193 9 63 55 37 25 2 2
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be described completely by combining exponential distributions in various ways. For example,

Brackney et al. (2011) found that waiting times between lever presses were described effectively

by a mixture of two exponential distributions. This and similar cases are compatible with the

Poisson hypothesis, by assuming that the animal switches between two situation with different

response rates. The causes of such switches are beyond the scope of the Poisson hypothesis and

would be sought in changes in stimuli, motivation, reinforcement, and internal decision processes.

The question remains of whether all decision making in animals can be adequately

described by combinations of Poisson processes. The literature contains many examples of

non-exponential distributions, such as peaked and multi-modal distributions, which have been

explained with sophisticated models that include the Poisson process but add such elements as

pacemakers, noise, and multiple response rates (Kessel & Lucke, 2008; Killeen et al., 2002;

Sanabria et al., 2019). We suggest that it may be possible to keep the unadorned Poisson process

as the sole mechanism of response generation, provided behavior is observed in sufficient detail

and a full model that includes stimulus control and timing is employed to account for short- and

long-timescale variation in response rates (see Methods).

For example, we did not encounter multi-modal distributions in our analysis. One reason

may be that we analyzed waiting times between any two responses we had data about, instead of

between alike responses as is typically done. To see why this matters, consider the distribution of

entry-entry waiting times in the model in Figure 1. An entry-entry event can occur in many ways,

such as entry-exit-entry, entry-exit-lever-entry, entry-exit-lever-lever-entry, and so on. The

corresponding waiting time distribution is bound to be more complex than those for the

elementary transitions in Figure 1. Indeed, the entry-entry distribution is often multi-modal even

in Iliescu et al.’s and George’s data (Figure 5), while the elementary distributions are adequately

described as exponential and hypoexponential. In other words, by using a finer-grained picture of

the animal’s behavior, we were confronted with simpler distributions that seem compatible with

Poisson processes.

To fully evaluate the Poisson hypothesis, we need further development in several areas.
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First, the terms of the hypoexponential distribution, Equation (12), or of more general Markov

models, should be better connected to behavior. We have assumed that these terms reflect

unobserved behaviors (or internal processes), but we have been unable to test this assumption

with available data. Using higher-resolution behavioral data would resolve this uncertainty. For

example, we can use pose-estimation software to reduce video data to low-dimensional vectors

describing the animal’s posture and relationship with the environment (Bohnslav et al., 2021;

Mathis et al., 2018), then use classification algorithms to sort these vectors into different

behaviors (Fujimori, Ishikawa, & Watanabe, 2020; James et al., 2013), and finally evaluate the

waiting times between these behaviors. These analyses might also cast light on individual

differences, such as those apparent in Figures 3 and 4, by showing the behavioral origin of

waiting time distributions. The approach can be eventually developed into full individual-level

Markov models (Sanabria et al., 2019).

Second, we have not developed the Poisson hypothesis for continuous response, such as

the force of biting or of lever pressing in rats (Daunton, 1973; Herrick, 1964) and the amount of

nictitating membrane closure in rabbits (Kehoe, Graham-Clarke, & Schreurs, 1989). One

possibility is to draw inspiration from the neural control of muscle force (Bawa, 2002; Burke &

Howells, 2016; Enoka & Duchateau, 2017). For example, we could assume that a stimulus can

activate many elementary Poisson processes, akin to how a muscle contraction results from the

activation many motoneurons. Response strength would then depend on how many Poisson

processes are activated, and by their rates.

Third, the Poisson hypothesis must be merged with learning and timing models to

investigate changing response rates. For example, a behavior’s rate can be set to vary across trials

according to the associative strength predicted by the Rescorla and Wagner (1972) model, and

according to timing models within trials (Buhusi & Schmajuk, 1999; D. Buonomano, 2005;

Grossberg & Schmajuk, 1989; Machado, 1997). We have not pursued these possibilities here

because we wished to evaluate the Poisson hypothesis independent of assumptions about learning

and timing, and because there is no accepted model that captures within- and between-trial
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changes in behavior. Establishing whether the Poisson hypothesis can be successfully combined

with models of learning and timing is an exciting task for future research.

If it can be developed into a satisfactory description of behavior, the Poisson hypothesis

suggests new approaches to outstanding issues. One is the extent to which organisms plan ahead.

In the Poisson model there is no planning because choice of behavior depends only on the values

of associative strengths, and because the exponential distribution is memoryless (see Methods).

Looking for deviations from the Poisson model may be a valuable strategy to detect more

complex decision making.

The Poisson model also speaks to the relationships between mechanistic and normative

models of learning. Mechanistic models, such as most associative models, attempt to construct

algorithms that describe observations of learning, like the Rescorla and Wagner (1972) equation.

Normative models, on the other hand, attempt to understand learning by asking how a rational

agent would learn. For example, the Rescorla and Wagner (1972) equation can be derived by

assuming that the goal of learning is error minimization under computational constraints such as

limited short-term memory (Enquist & Ghirlanda, 2005; Haykin, 2008; Widrow & Hoff, 1960).

Mechanistic and normative approaches are not necessarily in contrast (Hogan, 2017; Tinbergen,

1963), although which one is more fruitful is a matter of discussion (Beckers, Miller, De Houwer,

& Urushihara, 2006; De Houwer, Hughes, & Barnes-Holmes, 2016; Gallistel & Wilkes, 2016;

Gershman & Niv, 2012). Within this debate, Ghirlanda (2022) showed that Equation (2) enables

associative systems to perform probabilistic inferences often deemed beyond their reach (Cheng,

1997; Holyoak & Cheng, 2011). Here we showed that Equation (2) emerges from an elementary

decision-making mechanism, the Poisson process. This strengthens the idea that simple

mechanisms can behave, effectively, as if following sophisticated rules of inference, thus going

part of the way toward reconciling mechanistic and normative models.
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Figure 2

Empirical distribution of entry-exit intervals (circles) compared to the best-fitting exponential or

hypoexponential distribution (line), in data from Iliescu et al. (2018). Data are binned in 0.5 s

intervals. For each bin, the predicted value is calculated as Pa(x2)−Pa(x1), where Pa is the

cumulative distribution function with fitted parameters a (see top of each panel) and [x1,x2] is the

bin. Si indicates subject i, and r is the Pearson’s correlation coefficient between observed and

fitted values.
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Figure 3

Empirical distribution of lever-lever intervals (circles) compared to the best-fitting exponential or

hypoexponential distribution (line), in data from Iliescu et al. (2018). Individuals performing

fewer than 50 lever-lever transitions are excluded. See Figure 2 for details.



ASSOCIATIONS AND BEHAVIOR 23

0 2 4 6 8 10

0

40

80

a=0.43, 5.41

S1
r = 0.97

0 2 4 6 8 10

0

40

80

a=0.37, 2.66, 2.66

S2
r = 0.98

0 2 4 6 8 10

0
50

100
150
200

a=0.42, 6.01, 6.01

S3
r = 0.98

0 2 4 6 8 10

0
20
40
60
80

a=0.45, 1.91, 1.91, 1.91, 1.92

S4
r = 0.94

0 2 4 6 8 10

0

20

40

60
a=0.28, 2.09, 2.11, 2.12, 2.16

S5
r = 0.96

0 2 4 6 8 10

0
20
40
60

a=0.38, 0.77

S6
r = 0.93

0 2 4 6 8 10

0
50

100
150
200

a= 0.44, 35.65

S7
r = 0.98

0 2 4 6 8 10

0
20
40
60

a=0.29, 0.82

S8
r = 0.89

0 2 4 6 8 10

0
20
40
60
80

100
a=0.46, 1.98

S9
r = 0.87

0 2 4 6 8 10

0
20
40
60
80

a=0.41, 1.84, 1.84, 1.84

S10
r = 0.9

0 2 4 6 8 10

0
20
40
60

a=0.36, 2.10, 2.10, 2.10

S11
r = 0.96

0 2 4 6 8 10

0

40

80

120
a=0.32, 1.56

S12
r = 0.86

0 2 4 6 8 10

0
20
40
60

a=0.43, 1.76, 1.76

S13
r = 0.92

0 2 4 6 8 10

0
20
40
60
80

a=0.3, 2.1

S14
r = 0.93

0 2 4 6 8 10

0
20
40
60
80

a=0.38, 1.01

S15
r = 0.97

0 2 4 6 8 10

0

50

100

150
a=0.44, 1.76

S16
r = 0.99

t (s)

F
re

qu
en

cy
 o

f i
nt

er
va

l t

Figure 4

Empirical distribution of lever-lever intervals (circles) compared to the best-fitting

hypoexponentail distribution (line), in 16 subjects from George, D. N. (unpublished raw data).

See Figure 2 for details.
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Figure 5

Waiting time distributions for entry-entry intervals in some subjects from Iliescu et al. (2018),

labeled IL, and George, D. N. (unpublished raw data), labeled GE.
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