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Abstract

Identifying cognitive capacities underlying the human evolutionary transition is challenging,
and many hypotheses exist for what makes humans capable of, for example, producing and
understanding language, preparing meals, and having culture on a grand scale. Instead of
describing processes whereby information is processed, recent studies have suggested
that there are key differences between humans and other animals in how information is rec-
ognized and remembered. Such constraints may act as a bottleneck for subsequent infor-
mation processing and behavior, proving important for understanding differences between
humans and other animals. We briefly discuss different sequential aspects of cognition and
behavior and the importance of distinguishing between simultaneous and sequential input,
and conclude that explicit tests on non-human great apes have been lacking. Here, we test
the memory for stimulus sequences-hypothesis by carrying out three tests on bonobos and
one test on humans. Our results show that bonobos’ general working memory decays rap-
idly and that they fail to learn the difference between the order of two stimuli even after more
than 2,000 trials, corroborating earlier findings in other animals. However, as expected,
humans solve the same sequence discrimination almost immediately. The explicit test on
whether bonobos represent stimulus sequences as an unstructured collection of memory
traces was not informative as no differences were found between responses to the different
probe tests. However, overall, this first empirical study of sequence discrimination on non-
human great apes supports the idea that non-human animals, including the closest relatives
to humans, lack a memory for stimulus sequences. This may be an ability that sets humans
apart from other animals and could be one reason behind the origin of human culture.

Introduction

Understanding why non-human animals do not learn languages, mental arithmetic, or have
culture on a grand scale, is a challenge [1-6]. Many attempts have been aimed at identifying
minimal cognitive differences between humans and other animals by focusing on how animals
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process already acquired information. Some debated suggestions concern whether humans
alone understand grammar [7-11], engage in causal learning [12-15], represent higher-order
relationships [16, 17], or plan for the future [18-22]. Here, we address this challenge instead by
focusing on the ability to faithfully recognize and represent arbitrary sequential information,
that is, how an organism represent multiple arbitrary stimuli that are separated in time [23].

A few comments on sequential aspects of cognition and behavior

Before delving into details on memory for stimulus sequences, we start with a few brief com-
ments on the sequential aspects of cognition and behavior that are explored in this study.

First, our study concerns temporal sequences (see [23] for details). It is not about single
events, or simultaneous presentations of more than one stimulus, such as compound stimuli.
One could argue that both sensory input and behavioral output are by necessity stretched out
in time and can therefore, in some sense, be described as having sequential properties, like the
sound of a whistle or when a piece of food is swallowed. However, from the early ethologists
(e.g. [24]), comparative psychologists (e.g. [25]), and behaviorists (e.g. [26]), stimuli and
behaviors have been analysed and categorized as meaningful and identifiable events by using
coarse grained enough time scales and functional analyses of stimuli and behavior. This way,
hearing a whistle, or swallowing a piece of food, can be described as two different single events.
By the same reasoning, two stimuli that are presented on a screen, one after the other, can be
treated as a sequence consisting of two identifiable events.

Second, our study concerns recognizing and remembering input (stimuli) reaching an
organism. It does not concern behavioral output. This is important because performing a
behavior sequence does not per se require a representation of a stimulus sequences. In rein-
forcement learning, behavior sequences can be performed without a memory of the whole
learned sequence [27, 28] (faithful sequence memories can of course be implemented in arti-
ficial intelligence systems, by for example storing all moves in memory during a chess game
[29]). Instead, behaviors in the sequence are learned individually and linked through pri-
mary and conditioned reinforcement. This kind of linking individual behaviors to form
complex sequences of behavior forms the basis of training behavioral chains in the experi-
mental analysis of behavior, in behavioral psychology, and in applied behavior analysis [30-
32]. Furthermore, computational models of animal learning can account for the develop-
ment of behavior sequences without a need for faithful representations of stimulus
sequences ([33], see also [34], and chapter 3 and 5 in Enquist et al. 2023 [6], for in-depth dis-
cussions of sequential behavior and memory for stimulus sequences). Such learning models
have been shown to reproduce well-established learning phenomena in experimental psy-
chology [35, 36], and provide plausible accounts for how various behavior sequences can be
acquired in non-human animals (e.g. in tool use: [33], planning behavior: [21], social learn-
ing: [37], and caching behavior [38].

To conclude, here we focus on how animals recognize and remember stimulus sequences,
that is temporal series of at least two successive stimuli. We do not focus on how animals rep-
resent single stimuli, or many stimuli that are presented simultaneously. For these reasons, test
paradigms that involve simultaneously presented arrays of stimuli are beyond the scope of this
study [39, 40], as responding to simultaneous input does not require the recognition of tempo-
ral stimulus sequences, even if subjects perform behavior sequences in response to complex
input [41]. This also applies to the well-known studies where chimpanzees learned to point to
the location of up to nine numerals that were presented simultaneously (see [42, 43] for studies
on chimpanzees, and [44-46] for further discussion about these results). For the same reason
we do not focus on how animals learn behavior sequences. Therefore, how animals use various
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tools [47-49], and perform other behavior sequences when communicating with sounds or
gestures [50-53] is also beyond the scope of this study.

Ideas about how cognitive bottlenecks can constrain cognitive processes and behavior
make it interesting to study the recognition and memory of stimulus sequences. This is
because how sequential information is represented and remembered may affect subsequent
cognitive processes and expected behavioral outcomes. If, for example, an aspect of informa-
tion is lost already when it is perceived, it can neither be accessed nor used in later processes to
affect behavior. In other words, mechanisms for the acquisition and representation of informa-
tion can act as bottlenecks for subsequent representational levels and behavior [54].

Memory for stimulus sequences

A well established finding of a tentative cognitive bottleneck, rarely considered in contempo-
rary discussions on animal cognition, comes from delayed matching-to-sample studies (see
early work, e.g. [55-57], and text books, e.g. [58, 59]). In such studies, a single stimulus is typi-
cally presented to an animal for a few seconds. The disappearance of the stimulus marks the
onset of a delay, and after the delay two stimuli are presented together. One of these stimuli is
identical to the sample, whereas the other stimulus is different, and the animal is rewarded for
choosing the identical stimulus matching the sample. Hundreds of delayed matching-to-sam-
ple studies have been performed on birds and non-human mammals showing that animals
will learn this task to near perfection with zero-second delays, given sufficient training. How-
ever, performance of all non-human species degrade rather quickly, even after short delays.
Humans can, on the other hand, easily reach error-free performance with delays of 48 hours
[6, 60]. These differences in a general-purpose memory system, that birds and non-human
mammals quickly forget arbitrary stimuli, whereas humans can retain such information for
days and weeks [61], have been put forward as a tentative cause for the observed cognitive and
cultural divide between humans and other animals [6, 34, 46, 62].

Furthermore, the general pattern of rapid memory decay of single stimuli matches results
on how animals recognize and remember sequences of stimuli [23]. The common denomina-
tor is that patterns of animal working memory adhere to the idea of “trace memory” represen-
tation, which means that representations of single stimuli have no definite duration and fade
with time [63-65]. If an animal sees a green light followed by a red light, it will at a subsequent
time step have a stronger representation of the red light, as the memory of the green light has
faded more because it was observed before the red light. Ghirlanda et al. [23] analyzed over
100 stimulus sequence discrimination experiments (from 14 bird and mammal species). The
study included data from various test paradigms where animals have been subjected to tempo-
ral sequences of stimuli, including, for instance, rule learning [66, 67], artificial grammar stud-
ies [7, 68, 69], sequence discriminations [70, 71], song recognition in birds [72, 73], and some
clinical studies [74, 75]. The analysis found systematic and pervasive errors as expected from a
trace memory model, irrespective of the origin of the data. The study showed that animals con-
fuse, for example, a red-green sequence of lights with green-red and green-green sequences,
and that these kinds of errors persist after thousands of learning trials. Just like in delayed
matching-to-sample studies, no systematic differences were found between species due to eco-
logical niches or evolutionary history. In contrast, humans tell sequences apart nearly immedi-
ately, represent the order of stimuli faithfully, and have no difficulty discriminating between
red-green vs. green-red sequences of lights [23]. Thus, it was concluded that representing
sequential information faithfully sets humans apart from other animals, with one crucial
caveat: no explicit tests have been performed to determine if non-human great apes represent
stimulus sequences as unstructured collections of memory traces, as was found in other non-
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human animals. There are studies where chimpanzees have been subjected to stimulus
sequences [76, 77], but these studies were not designed to test alternative hypotheses, for exam-
ple if responses can be explained by trace memory representations [23].

To test the hypothesis that humans alone have evolved a capacity to faithfully represent
sequences of stimuli we here report the first comparative tests on humans and another species
of great apes, bonobos (Pan paniscus). Bonobos are together with chimpanzees the closest
extant relatives to humans. Our aim was to test if the closest relative to humans also represents
sequential information faithfully, or confuses even short sequences of stimuli as other non-
human animals do. First, we tested bonobos’ memory for single stimuli to see if they, like all
other tested non-human mammals and birds [60], rapidly forget an arbitrary stimulus. Second,
we tested if bonobos can tell the difference between two stimulus sequences, to see if bonobos
like all other tested animals find it exceedingly difficult to tell even short sequences apart.
Although we know that many human abilities rely upon memory for stimulus sequences and
require exact representation of order [23], we included a sequence discrimination test on
human subjects that mirrored the test for bonobos for the sake of a direct comparison of
results between humans and bonobos. Finally, we subjected bonobos to an explicit test of the
memory trace model previously described [23].

Materials and methods

All bonobos were born and raised in captivity and housed at the Ape Initiative (the former
Ape Cognition and Conservation Initiative) in Des Moines, Iowa, USA. For experiments on
human subjects, five students at Brooklyn College, New York, USA, took part in the study.

Ethical statement

Participation in all sessions was voluntary and a bonobo could at any time interrupt and leave
a test session. In addition, for bonobos, daily sessions were limited to a maximum of 120 trials
per individual. Procedures of these tests comply with the ASAB/ABS Guidelines for the Use of
Animals in Research and the study was approved by the Institutional Animal Care and Use
Committee of the Ape Cognition and Conservation Initiative (IACUC #190203-01 and
#190203-02).

For the experiment on humans, all participants were recruited and took part in this non-
invasive study on a voluntary basis. Subjects were allowed to leave at any time. These experi-
ments were authorised by Brooklyn College Institutional Review Board (IRB), and only SG
had access to information that could identify individual participants during the study.

Common procedures

All tests were performed using automated computer-controlled screens, and all subjects were
used to screens. Bonobos were experienced touch-screen users and students were experienced
computer-mouse users. Behavioral data was recorded automatically as a screen was touched,
or in the human part when the mouse was clicked. During rewarding trials, the computer pro-
gram elicited one of two distinct sounds after each response. In these trials, correct responses
were followed by a chiming sound. In tests on bonobos, this cued the experimenter to deliver a
food reward (rewards were generally of high value, most commonly grapes, peanuts, and
strawberries were used). In tests on humans, a large happy face-emoji appeared on the screen
simultaneously as this sound played. Furthermore, after an incorrect response, a buzzing
sound was played and the screen turned black. For bonobos, no subsequent food reward was
delivered, and for humans, a large sad face-emoji appeared together with the buzzing sound.
Bonobos were only tested when alone in their testing environment, with one exception. In one
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session, Kanzi requested to work on the touchscreen, but Maisha did not want to leave that
enclosure. As the two apes did not interact in any way, Kanzi did not show any sign of distrac-
tion, and they were in opposite parts of the room, we decided to allow Kanzi to perform tests
despite Maisha’s presence.

Inadvertent cueing of bonobos’ responses was avoided in one of two ways. When using a
dedicated test room, the experimenter was out of sight when the bonobo was facing the
touchscreen, and when tested in another enclosure, the experimenter could not see the
touchscreen the apes were working on.

A daily session began with a pause screen. If the ape pressed the screen during a pause, the
program did not respond. The experimenter started the program by using the keyboard and
every trial started with the presentation of a next button, a large +-shaped button. Different test
stimuli were used in the different parts of our study. All programs, including audio- and pic-
ture files, can be found at https://github.com/markusrobertjonsson/bonobo/tree/269e94e.

For bonobos, we started with delayed matching-to-sample tests and continued with
sequence discrimination tests. These parts were performed during 2019. We performed trace
model tests during spring 2022. Human sequence discriminations were performed during fall
2019.

Apparatus

At the Ape Initiative, bonobos interacted with the programs through touchscreens (a 24” Elo
Touch touchscreen (ET2401LM-8CWA) connected to a HP Pavilion Laptop, and a 32” Elo
Touch touchscreen (ET4243L) connected to a Mini Mac (A1347), refresh rate and resolution
of both screens were: 60 Hz, 1920 by 1080 pixels, respectively). Human subjects were tested on
a standard desktop computer, and interacted with the screen using a standard computer
mouse.

Delayed matching-to-sample in bonobos

In this study, two male bonobos, Kanzi (39 years old) and Teco (9 years old), participated.

Pre-training included both simultaneous- and zero-delay matching-to-sample. For simulta-
neous matching-to-sample, a sample stimulus (A or B) was first presented as a trial started,
and A and B were conspicuous blue and yellow squares, respectively. The sample stimulus
remained on the screen when the two response stimuli appeared, one matching- and one non-
matching stimulus. Here, and in the other matching-to-sample tests, choosing the matching
stimulus resulted in a food reward. The colour of the sample stimulus and the placement of the
correct response stimulus (right or left) was randomized with equal representation over 10 tri-
als. Task performance was measured as the frequency of correct trials over the last 20 trials per-
formed (within a session). After having reached a criterion of 80% correct choices over the last
20 trials, training of zero-delay matching-to-sample began. The zero-delay matching-to-sam-
ple was similar to the above, but the sample stimulus was presented for 2 seconds at the begin-
ning of the trial before it disappeared. Upon disappearance, the two response stimuli appeared
without delay and a response to the matching stimulus was rewarded. After having reached the
criterion of 80% correct choices over the last 20 trials, the delayed matching-to-sample test
started.

In the delayed matching-to-sample test we introduced delays between the disappearance of
the sample stimulus and the appearance of the two response stimuli. Delay durations were 0, 2, 5,
and 10 seconds. Every second trial was a 0-second delay to keep reward rates high, and the delays
of the remaining trials were determined in a pseudo-random order. For this reason, subjects
experienced more 0-second delays than other delays. And Kanzi experienced more 5-second
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delays than Teco because Kanzi started the delayed matching-to-sample with 5-second delays,
and we subsequently introduced other delays as no clear signs of improvements were found. Per-
formance was measured as the frequency of correct trials over the last 20 trials performed.

Sequence discrimination in bonobos

Here, four male bonobos (Kanzi, Nyota, Maisha and Teco, age range: 9-39 years old) partici-
pated. This test was inspired by the two-event sequence discrimination study on pigeons per-
formed by Weisman et al. [70]. Instead of using a go-no-go paradigm, we used a two-choice
paradigm with two response buttons: a left button (with horizontal bars), and a right button
(with vertical bars). During tests, two stimuli were presented following each other, each stimu-
lus was present on the screen for 1 second, and the inter-stimulus interval was 300 millisec-
onds. Response buttons appeared when the last stimulus of the sequence disappeared.

With two stimuli, A and B, the sequences AB, BA, AA and BB can be formed. In all trials fol-
lowing the sequence AB, the rewarded response was pressing a button on the left side of the
screen. Following sequences AA, BA and BB, pressing a response button on the right side of
the screen was rewarded. To prevent bonobos from developing a side bias, sequences were pre-
sented in blocks of 18 trials, consisting of 9 AB trials, and three each of the AA, BA, and BB
sequences. The order of stimulus sequences presented was randomized within these blocks.
The screen turned black for 3 seconds after an incorrect answer. Instead of using blue and yel-
low squares as stimuli, we now used blue and yellow full screens as stimuli. Half of the subjects
had ‘yellow’ as the A-stimulus and ‘blue’ as the B-stimulus, whereas the other half of the sub-
jects had ‘blue’ as the A-stimulus and ‘yellow’ as the B-stimulus.

In these sequence discrimination experiments we used ‘correction trials’. When a subject
made an incorrect choice the same sequence was repeated until they pressed the correct
response button. Correction trials were included when calculating the performance of the
apes. Here, we did not include a learning criterion because the aim was to quantify the acquisi-
tion of their discrimination between different stimulus sequences. All four subjects did a mini-
mum of 2,300 trials on this task and performance was measured as the proportion of correct
trials within blocks of 120 trials.

Sequence discrimination in humans

Human participants were recruited during autumn 2019 and participation resulted in earned
course credit. Authors other than SG had no access to information that could identify individ-
ual participants during or after data collection. The human test started with a single stimulus
discrimination and ended with a two stimuli sequence discrimination, and all human partici-
pants performed the whole experiment within one session that lasted approximately 30 min-
utes. Apart from the differences noted below, the sequence discrimination was identical to the
one bonobos were subjected to.

Stimulus A and B were blue and orange squares, and choice buttons were a white circle and
a black triangle. In contrast to the experiments on bonobos, this human part of the study did
not include food rewards. Instead of food, correct trials were followed by happy faces. A writ-
ten instruction told the human subjects to get as many happy faces as possible, and as few sad
faces as possible. Instructions were kept to a minimum and lacked information about the
study to not give students more information about the test than what the bonobos received.
Full instructions were as follows:

PLEASE READ THESE INSTRUCTIONS CAREFULLY —In this experiment, you will see
different shapes on screen. Touching some shapes will make a happy face appear, touching
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other shapes will make a sad face appear. Your task is to get as many happy faces as possible
and as few sad faces. THE TWO PARTICIPANTS WITH THE HIGHER SCORE (HAPPY
FACES MINUS SAD FACES) WILL RECEIVE A $25 STARBUCKS GIFT CARD. Make
sure to leave your SONA ID to enter the contest. You may interrupt the experiment at any
time without penalty. If you interrupt, you will still receive course credit, but you will not
enter the gift card contest. Please press the space bar to start.

After each response the same “correct”, or “incorrect”, sound was played as in the bonobo
study. Presentations of the happy face lasted two seconds and the sad face continued for 5 sec-
onds after which a blackout screen was presented. This test ended when a student reached 80%
correct responses over the last 20 trials.

Trace model test in bonobos

Here, two male bonobos (Kanzi and Teco) participated. To explicitly test if bonobos, like other
non-human animals, represent stimuli as unstructured collections of memory traces [23], we
used a modified zero-delay matching-to-sample test with probe trials containing stimulus
sequences. Bonobos first learned a matching-to-sample task with a pool of 20 test stimuli.
These stimuli were illustrations of common objects, for example illustrations of a tree, a bicy-
cle, and hands, respectively (see supplementary information for the appearance of all stimuli).
Here, a randomly drawn test stimulus was presented as a sample stimulus for 1 second. When
the sample stimulus disappeared, four stimuli appeared on the screen, three randomly drawn
stimuli and one stimulus matching the sample. The bonobo was rewarded for selecting the
matching stimulus, whereas a response to any of the other three stimuli was scored as incorrect
and resulted in a black-out screen for 5 seconds. After the criterion of 80% correct choices
within the last 20 trials was met, probe trials were introduced. Now, every block of ten trials
included one probe trial, at a random location within these ten trials.

During a probe trial, instead of being presented a single sample stimulus, a bonobo was sub-
jected to one of six sequences of two stimuli. Sequences were of the nature AB, where both sti-
muli were different and randomly drawn from the 20 test stimuli for each probe trial. After the
second stimulus in the sequence disappeared, four stimuli from the common stimulus pool
appeared. However, now both stimuli that occurred in the probe sequence were present,
together with two non-matching stimuli. It was only possible to select one stimulus after a
probe sequence, as all four stimuli disappeared after a stimulus had been selected. No
responses were rewarded during probe trials. This way, we could measure if the bonobos
selected the first or the second stimulus in the stimulus sequence.

We were interested in testing if different combinations of stimulus durations produced sys-
tematic patterns of choice as predicted by the trace memory model, which states that the dura-
tion of a stimulus will affect the intensity of the memory trace of that stimulus (see Fig 3 in
[23]). Therefore, we varied the duration of both the first and the second stimulus during probe
trials. For example, after a probe stimulus sequence AB, from a trace model a response to A
could be expected with sequence durations such as AjyngBsnore because this sequence would
result in a stronger trace of A than B. The exact prediction from a trace model will depend on
stimulus durations and the factor determining how quickly the trace memory decays. To com-
pare responses by the bonobos with trace model predictions we varied durations of A and B
systematically. In three of the probe sequences the first stimulus duration was held constant
(A = 1s) and the second stimulus was presented at three durations (B = 0.5, 1.5, and 4.5s), and
in the three other cases the first stimulus was presented at three durations (A = 0.5, 1.5, and
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4.5s) and the second stimulus was held constant (B = 1.0s, see also Table 2). Each bonobo was
subjected to 20 occurrences of the six probe sequences, totalling 120 probe trials.

Analysis

The automated program used during experiments produced output-files automatically, and
statistical analyses were performed with JASP 0.16.4.

Results
Bonobos

The two bonobos learned the simultaneous matching-to-sample in 1691 and 1701 trials, and
the zero-delay matching-to-sample after additional 120 and 198 trials, respectively (i.e. having
reached the criterion of 80% correct choices over the last 20 trials). When testing memory per-
formance in the delayed matching-to-sample task, both bonobos remembered stimuli better
than chance for delays up to five seconds (average performance and p-values from binomial
tests with the number of trials per duration, for Kanzi: 85% at 0 s (p<0.001, n = 866), 71% at 2
s (p<0.001, n = 190), 58% at 5 s (p = 0.001, 464), and 55% at 10 s (p = 0.16, n = 207), Teco:
88% at 05 (p<0.001, n = 692), 72% at 2 s (p<0.001, n = 226), 57% at 5 s (p = 0.037, n = 267),
and 53% at 10 s (p = 0.43, n = 194), and see Fig 1).

When examining the result from the sequence discrimination test we found that the four
bonobos did not learn to tell the stimulus sequences apart with any precision, even after on
average 2,370 trials. To see if performance improved at the end of the test we looked at perfor-
mance over the final block of 120 trials. The average performance of four bonobos to learn to
tell the four stimulus sequences apart was close to, or at, chance level (AA: 52% (+8 S.D.) cor-
rect choices, AB: 46% (20 S.D.), BA: 52% (+10 S.D.), BB: 50% (+14 S.D.), and Fig 2). When
looking at all trials performance did deviate from chance, both above and below 50%, but per-
formance was never close to 80% correct for any of the bonobos on any of the four sequences
(Table 1 and Fig 3).

To test if the memory trace model could predict responses to stimulus sequences in bono-
bos, we first examined if the bonobos responded differently to the different probe types.

1.0 Kanzi| - Teco
08_3: ........ e e ] B K

0.6 I I . I I

0.4 -

0.2+ .

ool _

o 2 4 6 8 10 0 2 4 6 8 10
Delay (s) Delay (s)

Average proportion correct

Fig 1. Delayed matching-to-sample. Average performance of two bonobos on delayed matching-to-sample at four
different delays (error bars show 95% confidence intervals). Asterisks indicate results significantly above chance level.

https://doi.org/10.1371/journal.pone.0290546.9001
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Fig 2. Performance on the last 120 trials in the sequence discrimination for bonobos. Filled circles show average
proportion correct choices for the four stimulus sequences in the last block of sequence discrimination for bonobos.
Open circles show individual data (n = 4, and error bars show standard deviation).

https://doi.org/10.1371/journal.pone.0290546.g002

Neither of the two bonobos responded differently than what was expected from chance levels
(x*-test for equality of distribution (between choosing A and B after each probe type): z* = 6,
48, p = 0.13 for Kanzi and y* = 5.06 p = 0.41 for Teco, see Table 2 for the number of responses
to the six different stimulus sequences we used in the probe trials). However, their responding
was not at random with respect to selecting one of the two matching stimuli (A or B) vs. the
two non-matching stimuli. Both apes selected one of the stimuli from the sample sequence
more often than the non-matching stimuli, as Kanzi selected either A or Bin 116 of 120 probe
trials (binomial test, testing the null hypothesis that selecting one matching stimulus (A or B)
was equally likely as selecting one of the two non-matching stimuli, p < 0.001), and Teco
selected either A or B in 94 of 120 probe trials (binomial test, p < 0.001). But, as their responses
with respect to A and B did not deviate from chance level, we did not proceed with fitting data
to the trace model.

Humans

Based on estimating performance in blocks of twenty trials, all five humans learned the
sequence discrimination nearly immediately, with on average 79% correct choices after 22.4
trials (range 20-28 trials, individual binomial tests for five subjects: p = 0.036, p = 0.035,
p=0.012, p = 0.027, p<0.001, see Fig 3).

Table 1. Performance in sequence discriminations of four bonobos. Values are percent correct with number of trials
in brackets and p-value from a binomial test.

Subject AA AB BA BB
Kanzi 63(401), 0.001 63(1250), 0.001 61(421), 0.001 63(415), 0.001

Maisha 41(356), 0.001 31(1346), 0.001 44(305), 0.039 40(346), 0.001
Nyota 41(413), 0.001 49(1032), 0.73 40(427), 0.001 37(456), 0.001
Teco 47(354), 0.22 42(1199), 0.001 43(381), 0.008 45(379), 0.04

https://doi.org/10.1371/journal.pone.0290546.t001
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Discussion

This study set out to test the hypothesis that memory for stimulus sequences is a cognitive
divide between humans and other animals [23], because so far no data has been available for
non-human great apes. This hypothesis states that non-human animals do not represent stim-
ulus sequences faithfully, but as unstructured collections of memory traces. Our results corrob-
orate two previous findings with respect to this hypothesis. First, in the delayed matching-to-
sample test, bonobos’ memory for arbitrary single stimuli decays rapidly (Fig 1). This does not
mean that bonobos and other animals cannot form other kinds of long-term memories [78]
(reviewed in e.g. [34, 79, 80]), but it does mean that working memory for arbitrary stimuli in
bonobos follows the same general pattern found in other non-human mammals and birds, in
stark contrast to human working memory that can form long-term memories of arbitrary sti-
muli [46, 60]. Second, the sequence memory test showed that bonobos do not recognize and
remember stimulus sequences with any precision (Fig 2), just like all other tested non-human
mammals and birds [23]. When humans were subjected to the same sequence memory test it
confirmed that humans recognize sequences, and the order of stimuli, with ease, as they
learned to recognize all four stimulus sequences almost immediately (Fig 3).

It should be noted that our explicit test of the hypothesis that bonobos, like other animals
[23], represent stimulus sequences as unstructured collections of memory traces was unsuc-
cessful. The responses of the two bonobos did not vary systematically to what we expected
from a trace memory-model. We expected there to be differences in responses depending on
the relative duration of the first and second stimulus in the stimulus sequence probes, and can
only conclude that further studies are needed to understand what causes the lack of faithful
memory for stimulus sequences in bonobos.

A lack of memory for stimulus sequences has consequences for our understanding of ani-
mal cognition. If the order of perceived stimuli is not represented, and if this acts as a cognitive
bottleneck for subsequent cognitive processes and behavior, then can we expect to find any
information processing mechanisms that depend upon some exact ordering of information?

-~ 1.0+ Kanzi 1.0+

o Maisha

0t> — _l\rlyota

S 084 — A?/?e?age 0.8

&

£ 0.64 0.6+

5 TRE

 0.4- 0.4-

S

S 0.2- 0.2- A8

2 ~ B8

< 0.0 0.0+
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Trial blocks (120 trials each) Trials per sequence

Fig 3. Sequence discrimination in bonobos and humans. Left panel shows the performance of bonobos (n = 4)
throughout the stimulus sequences task, and the right panel shows average results for human subjects (n = 5) for the
same task but shown per sequence. Note that bonobo performance was measured as the average proportion of correct
trials for each block and that within each 120-trial block, 60 trials were AB trials, and the other 60 trials were either AA,
BA or BB trials. Humans were subjected to the same proportion of stimulus sequences as the bonobos. In the right
panel, lines end after criterion was met, that is 80% correct responses within the last 20 trials.

https://doi.org/10.1371/journal.pone.0290546.9003
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Table 2. Duration (seconds) of the first and second stimuli, A and B respectively, of probe trial sequences during
the trace test phase, and the number of responses for each probe trial type.

A B Kanzi, responses to A & B Teco, responses to A & B
0.5 1.0 6, 14 4,13
1.5 1.0 5,15 4,12
4.5 1.0 8,11 4,11
1.0 0.5 6,13 7,7
1.0 1.5 1,18 3,12
1.0 4.5 3,16 3,14

https://doi.org/10.1371/journal.pone.0290546.t002

For this reason, are for instance causal learning, language, episodic memory, and true imita-
tion at all possible for non-human animals [34]? At the very least, these findings on the limits
of memory for stimulus sequences (see also [23]) suggest that tentative cognitive bottlenecks
and their consequences may have important consequences for understanding mental differ-
ences between humans and other animals.

Sequences are everywhere, and in animal communication individuals perceive sequences of
information all the time. Song learning in birds is sequential by nature, and possible through
genetic specializations [81]. Nevertheless, according to previous analyses [23] birds capable of
learning sequences of song elements have not been found to represent stimulus sequences
faithfully (e.g. starlings [7] and zebra finches [82]). The role of sequences, and order, of signals
in animal communication is still not clear [83], and our results on memory limits in animals
may prove useful for learning about the meaning and use of signals in the animal kingdom, for
instance in fields such as auditory scene analysis [84], and receiver psychology [85].

As mentioned in the introduction, it has been a challenge to find distinct cognitive differ-
ences between humans and other animals. A recent review by Seed and Laland [5] concluded
that “there are no traits present in humans and absent in other animals” that solely can explain
the cognitive differences between humans and other animals. The fact that bonobos, the closest
living relatives to humans, do not represent sequences of stimuli faithfully supports the
hypothesis that memory for stimulus sequences is at least one part of basal cognitive differ-
ences between humans and other animals. To the best of our knowledge, no study to date has
shown faithful memory for arbitrary stimulus sequences in a non-human animal, whereas
such memory is key for human everyday life when we speak and listen, prepare and cook
meals, and create and maintain personal systems of beliefs. This idea forms the basis for a
recent book where Enquist, Ghirlanda, and Lind, explore the human evolutionary transition
and argue that memory for stimulus sequences, together with sequential processing of infor-
mation may be important aspects of a cognitive and cultural divide between humans and all
other extant animals [6].

Conclusion

Two observations in this study support the idea that bonobos lack a faithful memory for stimu-
lus sequences. First, bonobos, like other non-human animals, forget arbitrary stimuli within a
short time span, suggesting they do not form long-lasting memories for arbitrary stimuli. Sec-
ond, it was difficult for bonobos to learn to tell short stimulus sequences apart. These patterns
match results found in all other tested non-human animals on both arbitrary single stimuli
[60] and sequences of stimuli [23]. This study highlights differences between humans’ and
other animals’ general-purpose memory systems as tentative causes for the observed cognitive
and cultural divide between humans and other animals.
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