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Abstract
A defining feature of Pavlovian conditioning is that the unconditioned stimulus
(US) is delivered whether or not the animal performs a conditioned response
(CR). This has lead to the question: Does CR performance play any role
in learning? Between the 1930’s and 1970’s, a consensus emerged that CR
acquisition is driven by CS-US experiences, and that CRs play a minimal
role, if any. Here we revisit the question and present two new quantitative
methods to evaluate whether CRs influence the course of learning. Our
results suggest that CRs play a decisive role in Pavlovian acquisition, in such
paradigms as rabbit eyeblink conditioning, pigeon autoshaped key pecking,
and rat autoshaped lever pressing and magazine entry.

Keywords: Pavlovian conditioning, instrumental conditioning, animal learn-
ing, computational modeling

Introduction
In Pavlovian conditioning, an initially neutral conditioned stimulus (CS) precedes an

unconditioned stimulus (US), to which the experimental animals have an established reaction,
the unconditioned response (UR). Learning is measured by the appearance of a response
to the CS, the conditioned response (CR). In Pavlov’s (1927) paradigmatic experiments
with dogs, CSs were visual or auditory stimuli, the US was food, and the UR and CR were
salivation. A defining feature of Pavlovian experiments is that the US is delivered whether or
not the animal performs a CR. This has lead quite naturally to the question: Does the animal
have to perform the CR in order for CR acquisition to proceed, or are experiences of CS-US
pairings sufficient?

The role of CRs in Pavlovian acquisition has been debated extensively between the
1930’s and 1970’s, during which time a consensus emerged that acquisition is driven by
CS-US experiences, with CRs playing a minimal role, if any. Mackintosh (1974, 1983)
effectively summarized the three major arguments in favor of this view as pertaining sensory
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preconditioning, response prevention studies, and omission training. These arguments, how-
ever, were originally conceived within distinct (albeit related) debates, namely, regarding the
role of reinforcement in learning and the distinction between stimulus-stimulus vs. stimulus-
response associations. In the following paragraphs, we contend that traditional arguments do
not exclude that CRs may have an important role in Pavlovian acquisition.

In sensory preconditioning experiments, a first phase of CS1-CS2 pairings precedes
a second phase of CS2-US pairings. Subsequent tests with CS1 often reveal a CR, despite
no CR having been previously performed to this stimulus (Brogden 1939; Kimmel 1977,
but see Reid 1952). These experiments demonstrate that some learning can occur in the
absence of both a US and a CR, which is generally conceptualized as a CS1-CS2 association
developing during CS1-CS2 pairings. However, CS1-CS2 pairings alone do not establish a
CR, which requires CS2-US pairings in the second phase. It remains possible that performing
CRs during CS2-US pairings is important to acquire the CR to CS2 and, therefore, to CS1.
Thus sensory preconditioning is compatible with the view that acquiring a Pavlovian CR
requires performance of the CR itself.

In response prevention studies, subjects experience CS-US pairings while putative
CRs are temporarily blocked. After a number of experiences normally sufficient for acqui-
sition, the block is removed and the CS is presented. The occurrence of CRs is then taken
as an indication that CS-US experiences are sufficient for learning. Table 1 summarizes
classic response-prevention studies, most of them reviewed by Solomon and Turner (1962,
few later studies seem to exist). An early, relatively large study by Harlow and Stagner
(1933) failed to demonstrate CR acquisition when CS-US experiences were given to animals
paralyzed by curare, seemingly supporting the notion that CR performance is necessary for
acquisition. However, in a remarkable series of studies, Girden established the following: 1)
under curare, muscular contractions can be produced, although they are minimal and often
do not cause overt movements; 2) these contractions can be conditioned similarly to normal
contractions; 3) contractions conditioned under curare disappear once the animal recovers,
but reappear if it is again drugged (Girden, 1940, 1942, 1947; Girden & Culler, 1937). Given
these findings, Harlow and Stagner’s (1933) failure came to be attributed to drugged animals
performing different CRs than non-drugged animals, rather than no CRs, and the original
question remained unsettled.

Solomon and Turner (1962) and Leaf (1964) attempted to make progress by using d-
tubocurarine, a curare variety unavailable to Girden that, based on reports from brave human
volunteers, was not expected to impair transfer between the drugged and non-drugged states
(Prescott, Organe, & Rowbotham, 1946; Smith, Brown, Toman, & Goodman, 1947). While
successful at face value, these experiments also trained the CR instrumentally either before
or after the animal was drugged. Specifically, Solomon and Turner (1962) first trained dogs
to press a panel to postpone a shock US. They then drugged the animals and exposed them
to CS1-US and CS2-No US contingencies. Upon recovery from the drug, four of five dogs
pressed the panel more to CS1 than to CS2. Leaf (1964) employed the same experimental
phases in the reverse order. In his tests, all eight dogs responded to CS1 more than to CS2.
These experiments do demonstrate that some learning can occur without CRs (for example, a
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CS1-US association). However, because the CR had been trained under conditions in which
it could be performed freely, they do not establish that CR acquisition is independent of CR
performance. In this sense, these studies are similar to sensory preconditioning experiments.

Table 1 also includes two experiments in which salivation was blocked with atropine
(Crisler, 1930; Finch, 1938) and three experiments in which leg flexion was prevented by
reversible damage of peripheral nerves (Beck & Doty, 1957; Kellogg, Scott, Davis, & Wolf,
1940; Light & Gantt, 1936). Crisler (1930) successfully conditioned salivation under atropine
in five dogs, but according to Finch (1938) his result was confounded by the use of a morphine
US, which can itself condition anticipatory nausea and consequent salivation. For this reason,
Finch (1938) used an acid solution as a US, obtaining salivary conditioning of very small
magnitude in two dogs (< 1 ml/minute over baseline). Of the nerve damage studies, Light
and Gantt (1936) and Beck and Doty (1957) demonstrated CRs after nerve regeneration,
while Kellogg et al. (1940) failed to observe CRs in four of six subjects, and noted that the
two subjects who performed CRs used muscles different from those that had been paralized
during CS-US experiences. Finally, two experiments with the paralytic agent bulbocapnine
resulted in four of five cats acquiring a CR (Beck & Doty, 1957, one of these experiment also
included nerve damage).

In summary, the evidence from response prevention studies appears mixed. Girden’s
work shown that curare is not a good method of response prevention, as it promotes learning
of drug-specific CRs that differ from normal CRs. Nevertheless, two small studies suggest
that conditioning may be possible under paralysis (Beck & Doty, 1957; Light & Gantt, 1936).
Other studies found no CR (Kellogg et al., 1940), or found a CR only when the response
was also trained in the non-drugged state (Leaf, 1964; Solomon & Turner, 1962). Even if we
interpret these results as demonstrating that CRs can be acquired without overt performance,
a general problem with response prevention studies is that blocking the peripheral expression
of the CR does not preclude the central nervous system from attempting to initiate the CR
(Mackintosh, 1974). It remains possible that this “decision to respond” be necessary, during
training, for successful CR acquisition even if the overt CR is blocked.

In omission training, a Pavlovian relationship is arranged between a CS and US,
but the US is withheld if the animal performs a CR (Sheffield, 1965; D. R. Williams &
Williams, 1969). Such an omission contingency often decreases CR occurrence, compared to
standard Pavlovian training, but the extent of this decrease depends on many factors (Holland,
1979; Mackintosh, 1974, 1983; Sanabria, Sitomer, & Killeen, 2006). What matters here,
however, is that a CR emerges at all from omission contigencies. While this indicates that
the consequences of the CR are not all-important for its acquisition (Mackintosh, 1974), it
does not rule out that CR performance plays an important role during acquisition, as subjects
in omission studies are free to perform CRs.

In conclusion, the findings reviewed above leave at least some room for continued
investigation into the role of CRs in Pavlovian acquisition. Indeed, several observations
suggest a large role. For example, it is well established that animals can experience many
CS-US pairings without producing any CRs, while acquisition proceeds steadily once CRs
start to occur (Gallistel, Fairhurst, & Balsam, 2004). Moreover, there is agreement that, if not
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Table 1
Response prevention studies. The Results column indicates how many subjects acquired

a CR (‘+’), did not acquire a CR (‘-’), or provided ambiguous results (labeled ‘?’). CSs
were auditory or visual stimuli, or the experimental apparatus. See the text for discussion
of potential confounds. * Results confounded by additional training of the CR in the non-
drugged state. † The CR may have been condtioned by the morphine US. See text for
discussion.

Study Exp Species US CR CR block Results

Harlow and Stagner (1933) 1 Dog, cat Shock Jump Curare 19-
Harlow and Stagner (1933) 8 ? Shock Leg flexion Curare 1-
Solomon and Turner (1962) Dog Shock Panel press Curare 5+, 1? *
Leaf (1964) Dog Shock Jump Curare 8+ *
Crisler (1930) Dog Morphine Salivation Atropine 5+ †
Finch (1938) Dog HCl in mouth Salivation Atropine 2+
Beck and Doty (1957) 1 Cat Shock Leg flexion Bulbocapnine 3+
Beck and Doty (1957) 2 Cat Shock Leg flexion Bulbocapnine,

nerve damage
2+, 1-

Light and Gantt (1936) Dog Paw shock Leg flexion Nerve damage 2+, 2?
Kellogg et al. (1940) Dog Paw shock Leg flexion Nerve damage 2+, 4-

acquisition, at least CR extinction depends on CR performance (in general: Rescorla 2002;
for taste-aversion learning: Balleine and Dickinson 1991; Garcia 1989). For example, when
several CRs become conditioned to a CS, and only one of them is extinguished, the others
are unaffected (Delamater, 1996; Rescorla, 2002). Lastly, of particular interest is Donahoe
and Vegas’s (2004) study of pigeons’ throat movement responses, which can be elicited as a
UR by oral water delivery. The key feature of these responses is their relatively long latency,
with a median of around 350 ms. This allowed the authors to arrange trials with a US-CS-UR
structure, in which a visual CS followed a water US but preceded the UR. This is akin to
backward conditioning, with the difference that responses occur despite the backward CS-US
relationship. Surprisingly, Donahoe and Vegas found that throat movement responses thus
conditioned were equivalent in frequency and magnitude to those conditioned with the usual
trial structure, CS-US-UR (forward conditioning). The authors concluded that the CS-UR
temporal relationship is more important than the CS-US relationship. Although aimed at the
UR rather than the CR, this study highlights that responses may have an important role in
conditioning. (Additionally, the UR and CR had the same form in this study.)

Here we attempt to discern a role for CRs in conditioning by analyzing data from
standard acquisition studies, free of experimental interventions other that the presentation
of CS-US pairings and the monitoring of CRs. For specificity, we focus on the following
models of acquisition:

Response-independent (R-Indep) model: CR acquisition is driven by CS-US experiences,
regardless of whether CRs occur or not. This is the current consensus. Additionally, it
is commonly assumed that overt CRs occur only once a measure of CR potential, such
as associative strength, is above a threshold value (Harris, 2011; Spence, 1956).
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Response-dependent (R-Dep) model: CR probability increases only on conditioning trials
in which a CR occurs. Without a CR, CS-US experiences have no effect. In this model,
it makes little sense to consider response thresholds. In fact, an initial CR probability
below threshold would prevent conditioning altogether, while an initial CR probability
above threshold would have no effect.

The R-Indep model predicts that acquisition proceeds steadily as a function of the number
of trials, even if no overt CRs occur. The R-Dep model, on the other hand, predicts that
CR probability on a given trial depends on the number of CRs performed previously, which
results in slower learning if CRs are initially rare. These properties of the R-Indep and R-Dep
models result in different statistical features of acquisition records, which we exploit to
develop two quantitative methods to discriminate between the models (for related work, see
Gallistel et al., 2004; Harris, 2011). The first method considers the probability distributions
of the number of trials in between CRs, which can differ considerably under the two models.
The second method uses a pattern recognition algorithm to classify acquisition records as
typical of one or the other model. We apply these methods to the 5 data sets described in
Table 2. We conclude that these data are most compatible with the R-Dep model. We examine
the implications of this result in the Discussion.

Before proceeding, we note that it is not always feasible, even in principle, to discrim-
inate between the two models with certainty. In fact, each model can generate individual
acquisition records that, statistically, are more likely under the other model, or that are equally
likely under either model. The situation is similar to the problem of telling a fair coin from a
biased coin. By chance, each coin can generate a sequence of heads and tails that mimics the
other. Circumventing this statistical difficulty has been our main motivation for developing
two very different methods. Encouragingly, the methods lead to the same conclusions.

Methods

Waiting time distributions

Our first method focuses on how many trials occur between successive CRs. Let Wk
be the number of trials between the (k−1)-th and k-th CRs, which we refer to as the k-th
waiting time. The R-Indep and R-Dep models predict different probability distributions for
waiting times, especially for the first few ones when CR probability is low (Fig. 1). The
method leverages these differences to infer which model is a better fit to empirical waiting
time distributions. We proceed through the following steps:

1. Use the principle of maximum likelihood to derive the best-fitting R-Indep and R-Dep
models for a given data set.

2. Derive the predicted waiting time distributions from the best-fitting models.

3. Compare each model’s predictions to empirical waiting time distributions. We make
three kinds of comparisons:
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Figure 1. Example probability distributions of the waiting time until a CR, W , in two R-
Indep R-Dep models of Pavlovian acquisition, with initial probability of p0 =0.025 (left) or
p0 =0.15 (right). The R-Indep model follows Eq. (2) with p∞ = 1, a =0.01. In the R-Dep
model, CR probability is fixed at p0 per trial.

(a) Visual comparisons, plotting the empirical and theoretical distributions to assess
their similarity qualitatively.

(b) Statistical comparison for each waiting time distribution, using the Kolmogorov-
Smirnov test to detect differences between empirical waiting time distributions
and those predicted by the two models.

(c) Overall statistical comparison for each data set, using the Wilcoxon paired test
to evaluate the null hypothesis that the two models are an equally good fit to the
overall distribution of the first 20 waiting times.

The advantage of this method is that it uses the best fitting R-Dep and R-Indep models, and
thus it does not require detailed assumptions about learning. For example, it does not assume
that learning proceeds according to the Rescorla and Wagner (1972) model or other formal
theories of conditioning. The potential disadvantage of the method is that it assumes identical
learning parameters across individuals. This assumption is necessary because estimating the
empirical distribution of a waiting time requires many observations, while each subject only
provides one waiting time. We discuss this assumption in the last part of this section.

Maximum-likelihood response-dependent model. In the R-Dep model, CR prob-
ability is constant between CRs, which leads to a geometric distribution of waiting times.
Let pk be the per-trial probability of a CR between k−1-th and k-th CRs. The waiting time
distribution of the k-th CR is then:

Pr(Wk = n) = pk (1− pk)
n−1 (1)

where the first factor is the probability of a CR after n trials, and the second factor the
probability of no CR in the preceding n−1 trials. Under this model, the expected waiting
time for the k-th CR is 1/pk. The maximum likelihood estimate of pk is simply 1/W̄k, where
W̄k is the average waiting time for the k-th response across all individuals in an experiment.
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Maximum-likelihood response-independent model. The waiting time distribution
for the R-Indep model is not geometric, because CR probability is not constant between CRs.
Theios and Brelsford (1966) showed that the maximum-likelihood R-Indep model for a given
data set has a simple form when stated in terms of CR probability per trial. Namely, the
maximum-likelihood R-Indep model is the one in which CR probability at trial t equals
the observed CR frequency on that trial, ft . Unfortunately, the corresponding waiting time
distributions do not have a simple analytical form such as Eq. (1). We have thus estimated
waiting time distributions by running, for each data set, 10,000 simulations of the maximum-
likelihood R-Indep model, i.e., using ft as CR probability on trial t, and then calculating the
distribution of waiting times observed in the simulated data.

Note that this method applies equally to R-Indep models with and without a response
threshold. The maximum-likelihood model, in fact, would simply estimate as 0 the probability
of a CR on any trial in which no CRs are observed, which would be interpreted as trials in
which response potential is below threshold.

Homogeneity of learning parameters. The assumption of identical learning param-
eters across individuals is necessary to compute empirical waiting time distributions, but it
appears to clash with the observation that individuals vary in the onset of responding and in
the rate of approach to asymptotic performance. Variability in performance, however, does
not per se prove heterogeneity of learning parameters, if we assume that stochastic factors can
influence learning and responding. For example, under the R-Dep model, a fixed response
probability of p = 0.05 per trial leads to a distribution of waiting times with a standard
deviation of

√
1− p/p' 19.5 trials, almost as large as the expected value of 1/p = 20. The

question of whether observed variability implies heterogeneity in learning parameters is thus
difficult to settle. Here we limit ourselves to testing whether a homogeneous R-Indep or
R-Dep model is compatible with empirical waiting time distributions. Namely, we will com-
pare theoretical and empirical waiting time distributions by means of Kolmogorov-Smirnov
tests (in its version for discrete distributions, see Arnold & Emerson, 2011). A significant
p-value from such a test would lead to rejecting the hypothesis that a homogeneous model
can reproduce the empirical distributions. A non significant p-value, on the other hand, would
be compatible with the hypothesis that different individuals have similar learning parameters.

Classification of individual acquisition records

Here we present a method that makes stronger assumptions about learning than the
previous one, but which allows different learning parameters across individuals. The method
relies on training a feed-forward artificial neural network (ANN, see Haykin, 2008) to
identify patterns of responding characteristic of the R-Indep and R-Dep models. For example,
response records with large gaps between the first few CRs would be more typical of the
R-Dep model. We proceeded in three steps:

1. We simulated a large number of acquisition records using the R-Dep and R-Indep
models with a variety of parameter values.
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2. We trained the ANN to recognize whether simulated acquisition records were generated
by the R-Indep or R-Dep models.

3. We used the trained ANN to estimate the probability that actual acquisition records
originate from either model.

The first two steps are detailed below. The third step is reported in Results.
We simulated the R-Indep model using the standard error-correction learning equation

(Bush & Mosteller, 1955; Rescorla & Wagner, 1972):

∆pt = a
(

p∞− pt
)

(2)

where pt is response potential at trial t, ∆pt the change in pt that occurs at trial t, p∞ the
asymptotic CR probability, and a the learning rate. At each trial, a CR was generated with
probability pt , if pt was larger than a threshold value θ ≥ 0. On any trial in which pt ≤ θ ,
no CR was generated. In each simulation, we set the threshold θ at a random value between
0 and 0.3. This range ensured that simulated data would include both situations in which the
threshold had virtually no effect, and situations in which the presence of the threshold would
delay CR onset significantly. (In pilot work, we also simulated the R-Indep model without a
threshold, with no change in results.)

We simulated the R-Dep model similarly to the R-Indep model, with the difference
that pt would change only on trials with a CR and that no response threshold was employed.
Specifically, we used the following equation:

∆pt = art
(

p∞− pt
)

(3)

where rt indicates whether a CR occurs (rt = 1) or not (rt = 0) on trial t. At each trial, a CR
was generated with probability pt . We used Eq. (2) and Eq. (3) to generate 7000 acquisition
records from each model, running 200 simulations with each combination of the following
parameter values:

p0 = {0.01,0.05,0.1,0.15,0.2,0.25,0.3}
a = {0.01,0.05,0.1,0.15,0.2} (4)

p∞ = 0.95

These values were chosen to cover approximately the range of learning speeds, and of initial
and asymptotic CR probabilities in empirical data. Each simulation included 150 trials. (In
preliminary investigations, we found that classification accuracy would decrease with fewer
trials.)

After having generated the simulated acquisition records, we trained the ANN to output
zero to records generated by the R-Dep model, and one to records generated by the R-Indep
model. The ANN had 150 input units, 10 hidden units, and one output unit. The activation of
input unit i was set to one if a CR had occurred on trial i, and to zero otherwise. The network
was trained by gradient descent as described in Venables and Ripley (2002), including five-
fold cross validation (see Software for details). Training resulted in an overall accuracy of
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about 92%. The left panel of Fig. 2 shows that accuracy was not overly dependent on the
decision boundary, i.e., the ANN output value used to discriminate between the two models.
We adopted a boundary of 0.5, meaning that network output above (below) 0.5 was interpreted
as identifying the R-Indep (R-Dep) model. The right panel in Fig. 2 shows ANN accuracy
as a function of initial CR probability and learning rate a. Note that model classification
degrades as initial CR probability increases, especially if a is not small. The reason is that
high CR probability leads to fast approach to asymptote in both models, reducing the number
of trials during which the models behave differently.
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Figure 2. Artificial neural-network (ANN) classification of simulated acquisition records
from the R-Dep and R-Indep models. Data from 7000 simulations for each model. Left:
Classification accuracy as a function of decision boundary, i.e., the ANN output value chosen
to demarcate the R-Dep and R-Indep models. Right: Classification accuracy as a function of
initial CR probability and learning rate, for a decision boundary at 0.5.

Data sources

Individual acquisition records are seldom published in their entirety. With the exception
of one published data set (Theios & Brelsford, 1966), we obtained our data by contacting
other researchers based on their published work and suggestions from colleagues. Table 2
summarizes the data sets, each of which is identified by a code for brevity. All data are
available at http://dx.doi.org/10.6084/m9.figshare.6494867 with code to repro-
duce our analyses. From data set Gu, we excluded one subject that was recorded as having
undergone only 5 conditioning trials, and one subject that responded only four times in
450 trials. Numbers in Table 2 indicate subjects included in our analyses. We had also
received autoshaping data for nine pigeons from Federico Sanabria, which we set aside when
we received the larger Gu data set, also from pigeon autoshaping. Results in the two data
sets are comparable. Additionally, Gavan McNally had provided us with data from condi-
tioned suppression experiments, which we excluded as their analysis would require different
methods.

In data sets T and K, the response measure is whether a CR occurs or not during
a trial, which we coded as one and zero, respectively. In data sets H, Go, and Gu, the
response measure is the absolute number of CRs during CS presentation within a trial. We

http://dx.doi.org/10.6084/m9.figshare.6494867
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Table 2
Data sets. The K data is from E. James Kehoe’s laboratory, previously analyzed by Gallistel

et al. (2004). The Gu data set was collected with the methods in Yamazaki, Aust, Huber,
Hausmann, and Güntürkün (2007).

Data set Species Paradigm Subjects Source

T Rabbit Eyeblink conditioning 90 Theios and Brelsford (1966)
K Rabbit Eyeblink conditioning 47 E. J. Kehoe, Gallistel et al. (2004)
H Rat Autoshaped lever press 36 Holland et al. (2014)
Go Rat Autoshaped magazine entry 55 Gottlieb (2005, 2008)
Gu Pigeon Autoshaped keypeck 19 O. Güntürkün

dichotomized this number to zero (no CRs) or one (one or more CRs). It would be ideal to
avoid this dichotomization in order to assess the effect of multiple responses in the same trial,
but we leave this refinement for future work.

Some data sets include data from similar experiments from the same laboratory, differ-
ing in some parameters such as inter-stimulus interval (ISI) and inter-trial interval (ITI). This
is not a problem for our classification method, which analyzes individual acquisition records,
but it may confound the empirical distribution of waiting times. Variation in experimental
parameters, however, had at most slight effects on CR acquisition (see Appendix), and con-
ducting separate analyses for the different parameter values leads to the same conclusions
reported below for the pooled data (not shown).

Software

Analyses were conducted within R version 3.5.0 (2018-04-23) (R Core Team, 2018).
The ANN was implemented using the ‘nnet’ package, version 7.3.12 (Venables & Ripley,
2002). Cross validation was implemented by the ‘tune’ function of the ‘e1071’ package,
version 1.6.8 (Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2017). For the discrete-
distribution Kolmogorov-Smirnov test we used the ‘dgof’ package, version 1.2 (Arnold &
Emerson, 2011). Analysis code is available at the URL given in the preceding section.

Results

Waiting time distributions

Figure 3 shows maximum-likelihood estimates of the first five waiting time distributions
for the R-Dep and R-Indep models, and compares them to empirical distributions. The models
frequently make similar predictions, but when predictions differ the data typically support the
R-Dep model. Examples include W1 in data sets T, K, Go, and Gu; W5 in data sets T, K, and
Gu data sets; W3 in data set T. The figure also highlights when either model’s predictions are
significantly different from empirical data, according to Kolmogorov-Smirnov tests. Note that
failure to reject either model implies that the hypothesis of homogeneous learning parameters
cannot be rejected, either.
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Figure 4 summarizes the result up to the 20th waiting time, in terms of each model’s
mean error. In the T, K, Go, and Gu data sets, the R-Dep model is overall closer to empirical
data. The H data set offers similar support for both models. Theios and Brelsford (1966)
provide further evidence against the homogeneous R-Indep model, by showing that it cannot
reproduce the sequential structure of responses in the T data set.

Classification of individual acquisition records

The ANN, trained as described in Methods, classifies the vast majority of individual
response records in the T, K, and Gu data sets as typical of the R-Dep model (Fig. 5). In data
set H, non-significant majority of records is classified as R-Dep, while records from data set
Go are largely classified as R-Indep (we could apply the ANN to only 16 subject of the Go
data set, as the others had received fewer than the 150 trials used to train the network).

It is not always easy to understand the classification criteria of ANNs, but in this
case visual inspection provides a rather clear picture. Figure 6 shows all individual records
analyzed, with those classified as typical of the R-dep model plotted with plus symbols, and
those classified as typical of the R-Indep model plotted with circles. Starting from the T data
set (top left), we see that the records that are classified as R-Indep often exhibit early onset
of responding and, once responding starts, a relatively steady progression toward asymptotic
response rates. Records that are ascribed to the R-Dep model, in contrast, have more delayed
onset of responding and longer gaps between the initial CRs. These criteria conform well to
our intuition of the two models. The K and Gu data set have rather fragmented records, often
with delayed onset of responding, and are classified almost entirely as R-Dep. The H data set
exhibits a mix of patterns, which are classified as R-Dep or R-Indep in approximately equal
number. The Go data set, with very early onset of responding and few breaks, is classified
almost entirely as R-Indep.

We believe it is possible to explain the the difference in results across data sets by
considering procedural differences between studies, rather than assuming different learning
processes across data sets or individuals. First, we recall that the R-Indep and R-Dep models
are more difficult to tell apart when initial CR probability is high (Fig. 2). Second, we note
that animals in the Go data set had a very high CR probability from the very first trials, as
evidenced by a mean of only 3 trials until the first CR. These values can be contrasted with
29, 68, and 54 trials in the T, K, and Gu data sets, respectively. The reason for high initial CR
probability in the Go data set was likely pre-training that facilitated CR performance. In fact,
Go experiments measured autoshaped magazine entries in rats who had been already trained
to approach the food magazine. The Go data set also exhibits a high learning rate, as subjects
quickly reached asymptotic responding. In conclusion, data set Go has characteristics that
are, on average, more typical of the R-Indep model, but which are also compatible with the
R-Dep model under conditions of high initial CR probability and high learning rate. A similar
argument can be offered for the H data set, which does not clearly support either model, and
which also employed a response (presses of a lever close to the food magazine) that was
facilitated by previous magazine training, resulting in high initial CR probability (a mean of
11 trials until the first CR).



RESPONSES IN PAVLOVIAN ACQUISITION 12

50 1001

0.0

0.5

1.0

p:

<0.0001

10 30 501

0.0

0.5

1.0

p:

0.0002

5 10 151

0.0

0.5

1.0

p:

0.003

5 10 151

0.0

0.5

1.0

p:

0.0008

5 101

0.0

0.5

1.0

p:

<0.0001

100 3001

0.0

0.5

1.0

p:

<0.0001

20 40 601

0.0

0.5

1.0

p:

<0.0001
0.002

20 40 60 801

0.0

0.5

1.0

p:

<0.0001
<0.0001

10 30 501

0.0

0.5

1.0

p:

<0.0001
0.002

5 101

0.0

0.5

1.0

p:

<0.0001

20 601

0.0

0.5

1.0

p:

0.004

10 30 501

0.0

0.5

1.0

p:

0.0006

10 30 501

0.0

0.5

1.0

p:

0.002

5 10 15 201

0.0

0.5

1.0

5 10 201

0.0

0.5

1.0

5 10 151

0.0

0.5

1.0

p:

0.001

2 4 61

0.0

0.5

1.0

1 2 3 4 51

0.0

0.5

1.0

1 2 3 41

0.0

0.5

1.0

1 2 3 4 51

0.0

0.5

1.0

50 1501

0.0

0.5

1.0

p:

<0.0001

10 20 30 401

0.0

0.5

1.0

5 15 251

0.0

0.5

1.0

10 30 501

0.0

0.5

1.0

p:

0.004

2 4 61

0.0

0.5

1.0

p:

<0.0001

W1 W2 W3 W4 W5

T

K

H

Go

Gu

n (trial)

P
r(

 w
ai

tin
g 

tim
e 

)<
n

Data R−Dep model R−Indep model

Figure 3. Waiting time distributions predicted by maximum-likelihood R-Dep model (dashed)
and R-Indep model (solid), compared to empirical data (gray). Wk is the k-th waiting time,
i.e., the number of trials between the k−1-th and k-th CRs. Plots in the same row pertain
to the same data set (indicated on the right). Plot in the same column pertain to the same
waiting time (indicated on top). P-values refer to Kolmogorov-Smirnov tests of the difference
between the empirical and the R-Dep or R-Indep distribution. Only tests yielding p < 0.01
are displayed.
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Figure 5. Classification of data from Pavlovian acquisition experiments by an artificial
neural network (ANN) trained on simulated data (see Methods). The numbers indicate the
number of individual acquisition records classified as typical of the R-Dep and R-Indep
R-Dep models, respectively. The p-value indicates the outcome of a two-tailed binomial test
of the null hypothesis that acquisition records are equally likely to be classified as R-Dep or
R-Indep.

Discussion

We developed two methods to gauge the role of CRs in Pavlovian acquisition. In our
first method, we used the maximum-likelihood R-Dep and R-Indep models with identical
learning parameters across individuals, and we compared the waiting time distributions
predicted by these models with empirical distributions. In our second method, we trained an
ANN to recognize whether simulated acquisition records had been generated by the R-Dep
or R-Indep model, in this case using a wide range of parameter values. A comparison of
Fig. 4 and Fig. 5 shows that results from the two methods are in full agreement. Overall, the
results favor the R-dep model, indicating that CR performance may be an important trigger
of acquisition. This surprising result suggests new directions for research in associative
learning, neuroscience, and applied settings. Experimentally, it would be valuable to devise
new Pavlovian acquisition paradigms in which the role of CRs can be assessed more directly.
Theoretically, it may be possible to devise more effective data analysis strategies. From a
neuroscientific point of view, we now have the tools to overcome the limitations of early
CR-prevention studies and determine which neural events are necessary for acquisition. For
example, our analysis indicate an important role of CRs in rabbit eyeblink conditioning,
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Figure 6. Individual response records for the data sets in Table 2. Each row represents an
individual, with symbols indicating trials in which a CR occurred. Records are arranged
according to trial of the first CR, from bottom to top. Records with CRs marked as + are
those classified as typical of the R-Dep model by the ANN (see Methods), records with CRs
marked as ◦ are classified as typical of the R-Indep model.
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whose neural basis are understood to a considerable degree (Christian & Thompson, 2003).
In applied settings, our results may suggest to reconsider the role of CRs in the acquisition of
phobias and other maladaptive behavior with a recognized Pavlovian component (Bernstein,
1999; Conklin & Tiffany, 2002; Siegel & Ramos, 2002). We leave these analyses and
investigations to future research. Below, we turn to the implications of our results for
associative learning theory.

What causes the first CRs?

The R-Dep model holds that CS-US pairings alone do not increase response probability,
and thus begs the question of what causes the first response (Mackintosh, 1983). This might
not be an insurmountable difficulty. First, as we remarked above when discussing the H and
Go data sets, previous training can favor CR performance. For example, rats typically start
autoshaping of magazine entry after completing magazine training, hence they are likely to
enter the magazine even during the very first trials of CS training. In other experimental
paradigms, we speculate that the first CRs occur because of sensitization, which typically
facilitates biologically appropriate responses to the US (Overmier & Curnow, 1969; Prokasy
& Ebel, 1964; Richardson & Elsayed, 1998). Thus, in eyeblink conditioning the US may
increase the frequency of eyeblinks (Grant, 1943a, 1943b), which can bootstrap learning by
increasing the probability that an eyeblink will occur in a conditioning trial. Similarly, in au-
toshaped lever pressing or key pecking, animals may perform the first responses because food
delivery (the US) sensitizes consummatory behavior such as approaching, manipulating, or
pecking salient objects. This perspective also suggests that only responses that are sensitized
by US delivery have a sizable likelihood of becoming CRs, compatible with a perspective
in which Pavlovian conditioning is integrated into biologically organized behavior systems
(Moore, 1973; Timberlake, 1994; Timberlake & Lucas, 1989). A pioneering recognition of
Pavlovian CRs as just one component of a biologically structured behavioral and motiva-
tional system can be found in the work of Zener (1937), who observed that salivation is just a
fraction of a dog’s behavior in a conditioning experiment. When not restrained, the dog also
enacts other behavior such as approach to, orientation toward, and investigation of the CS
and experimental apparatus, which in nature is appropriate for securing food.

Alternative models of Pavlovian acquisition

The R-Indep model we investigated is representative of accepted principles of Pavlovian
acquisition, that is, reliance on CS-US experiences rather than on CR performance, and
gradual approach to asymptote similarly to Eq. (2). However, it is possible that other response-
independent models may fare better. In this section we briefly discuss some prominent
variants of the response-independent hypothesis.

The debate around Pavlovian acquisition is traditionally intertwined with a debate on
the shape of acquisition curves. Mean acquisition curves are either uniformly negatively
accelerated or have a sigmoid shape with a shorter phase of positive acceleration followed
by a longer phase of negative acceleration (Harris, 2011; Mackintosh, 1974; Spence, 1956).
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Figure 7 exemplifies these findings in the data sets analyzed above. The classic analysis of
mean acquisition curves was conducted by Spence (1956), based on prior work by Hull (1943).
In his model, overt CRs occur only when response potential is above a threshold. A fixed
threshold, however, would disagree with the observed smooth rise in CR frequency. Spence
thus assumed that momentary factors, such as physiological and motivational variables,
add normally distributed noise to the CR generating process, which results in nonzero CR
probability even when response potential is nominally below threshold. This model accounts
well for the shape of acquisition curves, and allows sigmoid acquisition curves to arise from
the negatively accelerated curves generated by Eq. (2) and similar models (Bush & Mosteller,
1955; Pearce, 1987; Rescorla & Wagner, 1972). The model, however, produces even shorter
waiting times than the R-Indep model we have analyzed, which has a threshold mechanism
but no noise, and thus agrees more poorly with empirical data. The reason is as follows.
Suppose that response potential is nominally below threshold for the first few trials. It is
enough for the noise to bring response potential above threshold once in order to produce a
CR and thus record an earlier waiting time than if there were no noise. On the other hand,
to postpone a waiting time significantly, the noise would need to bring below threshold an
above-threshold response potential for a number of consecutive trials, which is less likely.
Thus adding noise reduces waiting times, compared with a model without noise.

In addition to Spence’s model, other models can produce both sigmoid and negatively
accelerated mean acquisition curves, including our R-Indep model with a distribution of
thresholds across individuals, as used above, or with a non-linear response function. Similarly,
the R-Dep model can produce both types of learning curves depending on learning rate
and initial response probability. Such flexibility in theoretical models implies that mean
acquisition curves are not especially diagnostic of underlying learning processes. For example,
according to our analysis, both the T and K data sets strongly favor the R-Dep over the R-
Indep model, yet their mean acquisition curves have very different shape (Fig. 7).

Nearly 50 years after Spence’s (1956) classic treatment, Gallistel et al. (2004) revital-
ized the debate on Pavlovian acquisition curves by proposing to conceptualize conditioning
as a process of accumulation of evidence, with CRs starting abruptly once enough evidence
has accumulated. This model, although radically different in theoretical motivation, makes in
practice the same predictions as the R-Indep model with a threshold and a very high learning
rate. For example, the response records classified as R-Indep by our ANN (Fig. 6) conform
well to Gallistel et al.’s (2004) model by virtue of displaying a relatively abrupt onset of
responding, followed by relatively steady responding. Many response records, however,
appear too fragmented to conform to this picture. Although we did not include very high
learning rates in our analysis, doing so would produce response records that fit the data more
poorly than the R-Indep model we used. For example, waiting times beyond the first would
be substantially shorter than in the data, because by definition each subject would be above
threshold at this point and thus it would respond at asymptotic levels. Harris (2011), in a
detailed study of autoshaped magazine approach in rats, reaches a similar conclusion by
providing evidence of a gradual, rather than abrupt increase in CR probability. (In Harris’
data, CRs were already occurring at the start of conditioning, at the rate of ' 4 CR/trial, due
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to previous training; see our discussion of the Go data set in Results for implications.)
Finally, we would like to mention that the applicability of the R-Dep model to acqui-

sition records does not prove, per se, that CRs are a causal factors in Pavlovian acquisition.
CRs might also be manifestations of other causal factors. For example, CR occurrence may
correlate with the animal attending to the CS, with attention rather than CR performance
as the main causal factor (we owe this observation to a reviewer). Of note, Theios (1963,
1968) and Theios and Brelsford (1966) introduced models in which CS-US experiences cause
probabilistic transitions between states of increasing CR probability. In these models, CR
onset is just a consequence of a transition having occurred. More work is needed to compare
empirical data with the predictions of these models, as well as of attentional models (Le
Pelley, 2004; Mackintosh, 1975; Pearce & Hall, 1980). Experimental work is also possible in
this domain, for example by attempting to quantify separately the effects of CR performance
and orientation toward the CS, which may be used as an operational measure of attention.
We hope that our results will provide motivation for both empirical and theoretical work.
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Figure 7. Average acquisition curves in the five data sets in Table 2. Solid lines are fits of
the sigmoid equation f (x) = c[1+ exp(−a(x−b))]−1; dashed lines are fits of the negative
exponential equation f (x) = c[1− exp(−a(x−b))]. Akaike information criteria (AIC) for
both models are given in figure legends (Akaike, 2011).

The interaction of Pavlovian and instrumental conditioning

The question of what triggers Pavlovian acquisition is linked to another unresolved
issue in associative learning theory, namely the relationship between instrumental and Pavlo-
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vian conditioning. Current theory holds that Pavlovian and instrumental contingencies can
result in a variety of associations between conditioned/discriminative stimuli, responses, and
unconditioned stimuli/reinforcers (Hall, 2002). How these associations interact in deter-
mining behavior remains a matter of considerable debate (Bouton, 2016; Dickinson, 1980;
Mackintosh, 1983). While there has been a steady trend recognizing many similarities be-
tween Pavlovian and instrumental learning (Dickinson, 1980; Miller & Balaz, 1981), most
texts in animal learning, cognition, and behavior analysis discuss Pavlovian and instrumental
phenomena largely separately (Bouton, 2016; Pearce, 2013; Pierce & Cheney, 2017), and
there is no accepted formal model encompassing both Pavlovian and instrumental learning.
Recently, we presented an associative learning model drawing from machine learning, ex-
perimental psychology, and ethology (Enquist, Lind, & Ghirlanda, 2016). Although our
presentation focused on instrumental learning, the model also includes a conceptualization of
Pavlovian learning. Here we offer a brief summary in order to clarify the model’s account of
Pavlovian acquisition, referring to Enquist et al. (2016) for other phenomena.

The model includes two learning processes. One is the learning of S-R associations.
This learning is “instrumental” in that it occurs only when a response is actually performed,
regardless of whether experimental contingencies are Pavlovian or instrumental. The second
process is the conditioning of stimulus values, that is, the value of stimuli as predictors
of reinforcers. This learning is “Pavlovian” in that it occurs independently of responding,
based on experienced S-S pairings. The model formalizes the interaction between S-S
(“Pavlovian”) and S-R (“instrumental”) learning by positing that learned stimulus values can
reinforce responding, that is, that they function as conditioned reinforcers. Both S-R and
S-S learning follow simple temporal-difference equations (Sutton & Barto, 1998; Wiering,
2005) that are closely related to Rescorla and Wagner’s (1972) learning equation. Formally,
the model is specified as follows. Consider a stimulus s to which the animal responds with
action a, which in turn is followed by stimulus s′. In Pavlovian conditioning, the sequence
s→ a→ s′ corresponds to CS→CR→US. Let v(a,s) be the associative strength between a
and s, we have:

∆v(a,s) = αv
[
u(s′)+w(s′)− v(a,s)

]
(5)

where αv is a learning rate, u(s′) the unconditioned value of s′, and w(s′) its conditioned
value. Equation (5) is equivalent to the classic Rescorla and Wagner (1972) learning equation
if we let λ = u(s′)+w(s′), i.e., if the asymptotic associative strength equals the sum of
unconditioned and conditioned values. Conditioned values are updated according to:

∆w(s) = αw
[
u(s′)+w(s′)−w(s)

]
(6)

where αw is a second learning rate. Note that this update rule depends only on the succes-
sion of stimuli (e.g., CS→US), and not on how the animal responds. The formalization
of a learning rule for conditioned values enables the model to learn sequences of actions
through chaining, as envisaged by Skinner (1936) and later authors (Pierce & Cheney, 2017;
B. A. Williams, 1994a, 1994b). Finally, the model posits a probabilistic decision making
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rule that selects actions according to their associative strength, in a manner compatible with
the matching law (Baum, 1974; Davison & McCarthy, 2016; Herrnstein, 1974). Phenomena
of stimulus competition such as blocking and overshadowing are dealt with similarly to the
Rescorla and Wagner (1972) model, by assuming that the elements of a stimulus compound
can acquire separate associative strength (Enquist et al., 2016; see also Ghirlanda, 2015).

In the case of Pavlovian acquisition, the model predicts that the CS will automatically
acquire conditioned value (as demonstrated by second-order conditioning, Pearce 2013), but
that CR probability will not increase unless the CR is performed. That response probability
changes only when a response is tried is a feature our model shares with similar models from
artificial intelligence (Sutton & Barto, 1998; Van Seijen, Van Hasselt, Whiteson, & Wiering,
2009; Watkins & Dayan, 1992), which provided additional motivation for our study. One
consequence of this feature is that waiting times between CRs are distributed geometrically,
as in the R-Dep model considered above, and compatibly with the empirical data we analyzed.
The model also eliminates the asymmetry between acquisition and extinction noted in the
Introduction, as both phenomena would require CR performance. Finally, the model takes
into account that Pavlovian and instrumental phenomena are part of biologically structured
behavior systems (Hogan, 1994; Timberlake, 1994; Zener, 1937) by positing that motivational
states, US delivery, and other factors can boost the probability of performing biologically
appropriate behavior (Enquist et al., 2016). We do not claim that the model captures perfectly
the relationship between Pavlovian and instrumental learning, or indeed that it is a complete
model of either. For example, the model’s predictions in the case of omission training has
still to be worked out in full. In pilot work, we have found omission training to maintain
varying degrees of responding, depending on such factors as initial associative strengths,
whether alternative behavior is possible or not, and duration of the CS. Whether or not the
model can successfully capture Pavlovian-instrumental interactions and other associative
learning phenomena, we believe that a clear formalization of both Pavlovian and instrumental
processes in a single model can be a meaningful step toward a more harmonic theory of
associative learning.
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Appendix
Homogeneity of data sets

We assessed homogeneity of data with respect to experimental parameters by evaluating
whether the waiting times until the 1st, 10th, and 50th CR varied significantly across parameter
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values.
The K data set includes ISIs between 200 ms and 1200 ms, but this variation did

not affect waiting times (Table A1). The Go data set includes data from experiments with
different ITIs (20 or 30 s), CS duration (120, 150, 240, 480, or 960 s), and spacing between
sessions (0, 1, or 3 days). A full assessment of the effect of these variables is impossible
because not all combinations of these values were used. There was, however, little effect
of these parameters on acquisition (Table A2, Table A3 Table A4). Acquisition was slower
for subjects receiving training every fourth day and with a 480 s CS (Table A2). Only eight
subjects were run in this condition, however, and removing their data does not alter the results
reported in the main text.

In the Gu data set, variation in US rate (100% or 50%) had a small effect on waiting
times (Table A5). Analyzing the two conditiones separately, however, yields the same
results as pooling all data. Lastly, the T and H data sets were homogeneous with respect to
experimental parameters.

Table A1
Results of ANOVAs relating the number of trials until the 1st, 10th, and 50th CR and the ISI
in the K data set.

Variable Term Sum of squares d.f. F p

W1 ISI 11162.51 1.00 2.41 0.13
Residuals 208597.24 45.00

W10 ISI 5976.43 1.00 0.86 0.36
Residuals 312342.85 45.00

W50 ISI 907.27 1.00 0.14 0.71
Residuals 281807.53 44.00

Table A2
Results of ANOVAs relating the number of trials until the 1st, 10th, and 50th CR and days

between sessions in the Go data set.

Variable Term Sum of squares d.f. F p

W1 Days 120.08 1.00 26.26 0.00
Residuals 242.35 53.00

W10 Days 92.04 1.00 7.77 0.01
Residuals 627.89 53.00

W50 Days 42.67 1.00 1.11 0.30
Residuals 1149.33 30.00
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Table A3
Results of ANOVAs relating the number of trials until the 1st, 10th, and 50th CR and ITI in

the Go data set.

Variable Term Sum of squares d.f. F p

W1 ITI 0.61 1.00 0.09 0.77
Residuals 361.83 53.00

W10 ITI 0.01 1.00 0.00 0.98
Residuals 719.91 53.00

W50 ITI 112.67 1.00 3.13 0.09
Residuals 1079.33 30.00

Table A4
Results of ANOVAs relating the number of trials until the 1st, 10th, and 50th CR and CS

duration in the Go data set.

Variable Term Sum of squares d.f. F p

W1 CSdur 4.81 1.00 0.71 0.40
Residuals 357.63 53.00

W10 CSdur 0.00 1.00 0.00 1.00
Residuals 719.93 53.00

W50 CSdur 16.79 1.00 0.43 0.52
Residuals 1175.21 30.00

Table A5
Results of ANOVAs relating the number of trials until the 1st, 10th, and 50th CR and US rate
in the Gu data set.

Variable Term Sum of squares d.f. F p

W1 Reward 9013.73 1.00 4.18 0.06
Residuals 36679.96 17.00

W10 Reward 6852.01 1.00 2.54 0.13
Residuals 45936.10 17.00

W50 Reward 36802.63 1.00 6.93 0.02
Residuals 90308.32 17.00
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