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a b s t r a c t

Across many taxa, intriguing positive correlations exist between intelligence (measured by proxy as
encephalization), behavioral repertoire size, and lifespan. Here we argue, through a simple theoretical
model, that such correlations arise from selection pressures for efficient learning of behavior sequences.
We define intelligence operationally as the ability to disregard unrewarding behavior sequences, without
trying them out, in the search for rewarding sequences. We show that increasing a species’ behavioral
repertoire increases the number of rewarding behavior sequences that can be performed, but also the time
required to learn such sequences. This trade-off results in an optimal repertoire size that decreases rapidly
with increasing sequence length. Behavioral repertoire size can be increased by increasing intelligence or
lengthening the lifespan, giving rise to the observed correlations between these traits.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The main theoretical question of this paper is how selection
for efficient learning shapes the evolution of a species’ behavioral
repertoire. At first sight, a large behavioral repertoire appears ben-
eficial because it enables an animal to act upon its environment
in many ways, thus broadening the spectrum of resources that
can be exploited. A crab’s claws, for example, can just grasp and
crush,while the hands of primates can performa large range ofma-
nipulations that contribute to impressive feeding behavior (Strier,
2010). Why, then, do not all species have large behavioral reper-
toires? Apart from constraints on the evolution of morphology and
motor control (Arnold, 1992), we argue that a large repertoire in-
curs a hidden cost because it increases the time necessary to learn
functional sequences of behaviors. Our argument rests upon two
observations. First, behavioral repertoires are mainly genetically
determined and are often limited to a small number of behaviors.
Second, animals obtain rewards by combining these genetically de-
termined behaviors into learned sequences (we use the term ‘‘re-
ward’’ to indicate any positive contribution to fitness, such as food,
shelter, safety from predators, temperature regulation, and so on).

All species have an inborn repertoire of behavior patterns that
develop without any specific experiences (Hinde, 1970; Hogan,
2001; Berridge, 1994; Lorenz, 1981). These patterns, called fixed
action patterns in ethology, are centrally generated and are typi-
cally performed by young animals without peripheral or external
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feedback (Hinde, 1970; Hogan, 2001; Lorenz, 1981). Rat pups, for
example, can suckle from birth without any need for learning (Hall
et al., 1975). Similarly, movements used in dust bathing in chick-
ens develop spontaneously during the first twoweeks of life, before
they are used in dust bathing (Larsen et al., 2000; Vestergaard et al.,
1990). Ethologists have determined the inborn behavioral reper-
toire of many species and studied its evolution and genetic de-
termination through comparative methods (Hinde and Tinbergen,
1958; Lorenz, 1981, 1941) and the observation of species hybrids
(see Dilger, 1960, Buckley, 1969 for the selection of nestmaterial in
parrots, and Lingle, 1993, Lingle, 1992 for gait in deer). Of greatest
relevance to this paper are studies about exploratory behavior and
learning. Glickman and Sroges (1966) assessed exploration of novel
objects in more than 100 mammal and reptile species, reporting
great variation in the quantity and form of exploratory behavior.
Primates and carnivores explored the most, followed by rodents,
marsupials, insectivores and edentates; reptiles explored the least.
Time spent exploring correlated with the number of exploratory
behaviors. Rodents, for example, mainly sniffed and gnawed at
novel objects, while many primates engaged in extensive manip-
ulation and prolonged visual inspection. Consistent species differ-
ences in exploratory behavior have also been reported in foraging
behavior (Mettke-Hofmann et al., 2002), including differences in
how experience influences future exploration (Mettke-Hofmann
and Gwinner, 2003).

Ethologists have also demonstrated that individual experience
is important to organize inborn behaviors into functional se-
quences. A squirrel (Sciurus vulgaris), for example, uses several be-
haviors to open a nut, such as holding, gnawing, and prying (Eibl
Eibesfeldt, 1975). Young squirrels can hold, gnaw, and pry, but
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are inefficient nut openers because they use these behaviors ran-
domly on the surface of the nut, until it cracks. By trial and error,
they gradually learn how to assemble these behaviors into an effi-
cient sequence (Eibl Eibesfeldt, 1963, replicated in S. lis by Tamura,
2011). This example brings us to our second observation, and the
crux of our argument. Learning, to contribute substantially to in-
dividual fitness, should not be limited to the acquisition of single
behaviors in response to specific stimuli. Rather, fitness is most
enhanced when coordinated sequences of behaviors are acquired.
Learning sequences is much harder than learning single responses
because of a combinatorial explosion in the number of sequences
that can be tried out. The development of tool use in chimpanzees
(Pan troglodytes) exemplifies this problem. Inoue-Nakamura and
Matsuzawa (1997) studied how chimpanzees at Bossou, Guinea,
learn to crack nuts with stone or wooden anvils and hammers, us-
ing a sequence of five behaviors: pick up a nut, place it on the anvil,
pick up a hammer (requires a different grip than picking up a nut),
hit the nut, and eat the nut. It takes the chimpanzees thousands
of attempts over three or more years to learn this sequence. Apart
from perfecting the necessary motor skills, we argue that a major
difficulty in such learning is that the five actions must be chosen
among many. Inoue-Nakamura and Matsuzawa (1997) observed
the animals perform at least 35 different actions on stones and
nuts. Chimpanzees can thus potentially perform at least 355

≃ 50
million sequences of 5 behaviors involving stones and nuts. How to
find the correct sequence among so many? There are at least two
different ways, not mutually exclusively, to resolve this combina-
torial dilemma and reduce sequence learning times.

1. Limiting the behavioral repertoire. If chimpanzees could only
perform on stones and nuts the 5 actions they actually need
to open the nuts, they would only need to try 55

= 3125
sequences. Thiswould, of course, limitwhat they cando in other
situations.

2. Intelligence. We define intelligence as the ability to disregard,
without explicitly trying them out, behavior sequences that
are not profitable (this definition includes both individual and
social learning, see Section 4). Chimpanzees could, for example,
understand that placing the nut on the anvil is the first thing to
do. This would reduce the number of sequences to try to 354

≃

1.5 million. If chimpanzees further understood that picking up
the hammer should come next, the number of sequences to try
would decrease to 353

≃ 40,000.

In the following, we introduce a simple mathematical model to
study the coevolution of behavioral repertoire and intelligence
under the selection pressure for efficient learning of functional
sequences of behavior. The model predicts that large behavioral
repertoires should be observed only in intelligent and long-lived
species. We evaluate this prediction in a concluding Discussion.

2. The model

We introduce a model environment and a model animal that
learns from interacting with the environment, and then calculate
the optimal repertoire size for the animal. The environment is
described by the following assumptions:

1. There are A actions that can be used to act upon the environ-
ment (e.g., grasp, push, pull, lift, twist, and so on). An animal’s
behavioral repertoire may comprise any number of actions be-
tween 0 and A.

2. The environment delivers a reward of 1 to the animal each time
a specific sequence of l actions is performed. Other sequences
yield zero reward—this is actually a cost because the time spent
performing an unrewarding sequence could have been spent
earning a reward.
3. Each action has the same probability to be part of the reward-
ing sequence. That is, the probability that an action is the correct
one at any point in the sequence is 1/A.

4. The rewarding sequence does not change over an animal’s life-
time.

We make the following assumptions about animal behavior:

5. The behavioral repertoire is genetically determined, but the
animal must learn which actions to use to obtain rewards.

6. The animal can perform a total of T actions in its expected
lifetime (all actions take the same time).

7. The animal explores the environment by performing sequences
of l actions at random until it stumbles upon the rewarding se-
quence and collects a reward. Thereafter, the animal continues
to perform the rewarding sequence until it dies.

8. Actions can be added freely to the behavioral repertoire (there
are no morphological or genetic constraints).

These assumptions are clearly a simplification of actual learning
strategies. Animals, for example, usually take more than one ex-
perience to learn. They also do not try actions randomly, but use a
variety of mechanisms to explore the environment in a more tar-
geted way. Our model environment is also highly simplified. In a
realistic environment some behaviors may have a higher proba-
bility of entering profitable sequences (a departure from assump-
tion 3), and in general there are many profitable sequences which
differ in length and value (a departure from assumption 2). After
discussing this simple model, we will show how to generalize it to
different learning strategies and more realistic environments.

3. Evolution of repertoire size

We want to calculate the reward, rl(n), that an organism with
a repertoire of n behaviors expects to collect under the hypothe-
ses above, when attempting to learn a sequence of length l. Condi-
tioning on the probability that the repertoire contains all l actions
required to collect a reward, we write

rl(n) = E(reward)
= E(reward | all actions in repertoire)

× Pr(all actions in repertoire). (1)

The first term is the number of times the animal is expected to
complete the profitable sequence. If the animal devoted all of the
available T actions to performing the rewarding sequence, it would
collect ⌊T/l⌋ rewards (⌊x⌋ is the integer part of x). Some of the T ac-
tions, however, are used to learn, i.e., to search for the rewarding
sequence among all possible sequences. We can thus write

E(reward | all actions in repertoire)

=


T
l


− sequence search time + 1


. (2)

where we add 1 because the learning phase terminates with a
successful performance of the rewarding sequence. The sequence
search time is calculated based on assumptions 5–7 as follows.
With a repertoire of n actions, the animal can try out nl sequences
of length l. Each such attempt requires l time steps. If sequences
are tried out at random, with no memory of what has been tried
before, the expected time to find the profitable sequence is

sequence search time = lnl (3)

resulting in

E(reward | all actions in repertoire) =


T
l


− lnl

+ 1


. (4)
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Fig. 1. Left: optimal repertoire size vs. sequence length for random search and intelligent search of rewarding action sequences (see text). Approximate solutions are
calculated according to Eqs. (7) and (9). Right: lifetime reward vs. sequence length, when using behavioral repertoires of optimal size. Lifetime reward is expressed as a
proportion of its maximum value ⌊L/l⌋, corresponding to an organism with a full behavioral repertoire (n = A) and innate knowledge of the rewarding sequence. Lifetime
reward decreases rapidly with sequence length, but intelligence can overcome such a decrease up to a certain sequence length. Model parameters: T = 105, A = 100.
The second term in Eq. (1) can be calculated in two ways. The first
is to assume that the organism’s repertoire of n different actions is
built first, and then ask what is the probability that, when build-
ing a sequence of l actions, we choose only actions that have been
included in the repertoire. The second way is to assume that the
rewarding sequence is built first, and then ask what is the proba-
bility that a random choice of n actions includes all actions in the
sequence. The two ways are equivalent because the repertoire and
the rewarding sequence are built independently of each other. The
first way results in simpler calculations and is pursued below. The
second way is presented in Appendix A.

The organism’s behavioral repertoire is a random sample of n
different actions out of A possible ones. The rewarding sequence
is constructed by randomly selecting l actions out of A. In terms
of probabilities, this is equivalent to having A boxes, of which
n are marked, placing l balls randomly in one of the boxes, and
asking the probability that all boxes receiving a ball are marked.
The probability that a ball is placed in one of the marked boxes is
n/A. Because the l balls are placed independently of each other, the
probability that they are all placed in marked boxes is the product
of the probabilities for placing each ball in a marked box, resulting
in

Pr(all actions in repertoire) =

n
A

l
. (5)

Given Eqs. (4) and (5), the expected reward in Eq. (1) becomes

rl(n) =
nl

Al


T
l


+ 1 − lnl


. (6)

The value of n that maximizes this expression is the optimal
repertoire size. Note that the number of possible actions, A, enters
only through a multiplicative factor and thus does not influences
repertoire size other than constraining it to n ≤ A.

The first term in Eq. (6) increases monotonically (a larger
repertoire is more likely to contain all necessary actions), while
the second termdecreasesmonotonically (it takesmore time to try
out sequences composed of more actions). We show in Appendix B
that Eq. (6) has exactly one maximum in n (provided T/l is not
too small), which is thus the optimal repertoire size. Fig. 1 (right
panel, solid line) shows that a large behavioral repertoire (up to a
limit of n = A) is optimal for very short sequences. As sequence
length increases, however, repertoire size drops rapidly. We can
gain insight into this result by noting that the expected reward
in Eq. (6) vanishes for large enough n. Hence an upper bound for
repertoire size is given by the solution of rl(n) = 0, or

n̂l =
l


1
l


1 +


T
l


≃

l


T
l2

(7)
where, for simplicity, we discarded the 1 addend and the ⌊·⌋

function. The value in Eq. (7) is an excellent approximation of
the optimal behavioral repertoire size (Fig. 1, gray lines), because
as repertoire size increases the second factor in Eq. (6) decreases
toward zero very rapidly (note that n̂l = A should be used if Eq. (7)
exceeds A).

4. Evolution of intelligence

So far, we have assumed that animals try actions at random
until they stumble upon the rewarding sequence. More efficient
search strategies are, of course, possible. The key observation to
model such strategies is that, regardless of details, a strategy con-
fers an evolutionary advantage only to the extent that it shortens
the time to find rewarding behavior sequences. In other words, in-
telligence can be defined as the ability to disregard unrewarding
behavior sequences without trying them out. Here we choose the
simplest way to model this effect in order to demonstrate how in-
telligence influences behavior repertoire (other models are possi-
ble, see below). Namely, we introduce an ‘‘intelligence’’ parameter,
s < 1 such that, at each step in a sequence, the number of behav-
iors to consider is reduced by a factor s (smaller values of s indicate
larger intelligence). Including such a factor in Eq. (6) yields

rl(n) =
nl

Al


T
l


+ 1 − lslnl


, (8)

which leads to a simple modification of Eq. (7):

n̂l ≃
1
s

l


T
l2

, (9)

or, taking logarithms

log n̂l = log
1
s

+
1
l
log T −

2
l
log l. (10)

These equations imply that behavioral repertoire should increase,
compared to Eq. (7), in proportion to the ability to disregard un-
rewarding sequences. This ability can be realized in a number of
ways, not mutually exclusive. One such way is through genetic
predispositions to use behaviors in specific contexts. For example,
swallowing is useful when foraging but not, usually, when court-
ing. This strategy partitions the behavioral repertoire into smaller
subsets (possibly overlapping) which, in any given context, result
in shorter search times. There is ample evidence for context de-
pendent repertoires (or ‘‘behavior systems’’; see Breland and Bre-
land, 1961, Hogan, 1994 and Hogan, 2001). For example, rats tend
to move away from stimuli that signal shock, and learn only with
great difficulty if they have to approach a stimulus (or press a lever)
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in order to avoid shock (Bolles, 1970). The examples recalled in the
introduction, about squirrels and chimpanzees learning to open
nuts, clearly demonstrate howcontext dependent repertoires facil-
itate learning. Both species, when foraging, try out behaviors that
appear more likely to be productive, and avoid behaviors such as
vocalizing or courting that would in all likelihood be unproductive
in a foraging context.

Stimulus generalization is another ability that facilitates learn-
ing. An animal that has learned that a response to a stimulus is re-
warded (unrewarded) will tend to respond (not respond) also to
similar stimuli (Mackintosh, 1974; Ghirlanda and Enquist, 2003).
To the extent that similar stimuli signal similar environmental
states, stimulus generalization enables animals to try out behaviors
that have a higher probability of leading to reward, and to avoid
those that are likely unrewarding. The list of abilities that has been
suggested to underlie animal learning and behavior is long, and
includes conditioned reinforcement, cognitive maps, planning, in-
ference, social learning, and so on (Bouton, 2007; Pearce, 2008).
The evolution of these abilities is beyond our present scope, but
we note that they can all be modeled, for the present purposes,
as shortening the time it takes to discover functional behavior
sequences.

5. Model generalization

In this sectionwe show that themain conclusions derived above
for a very simple environment also apply to more realistic ones.
We have assumed so far a stationary environment (assumption 4),
but it is easy to see that environmental variability can only
reduce repertoire size, compared to a constant environment. In
a variable environment, in fact, a behavior sequence can stop
being rewarding, requiring the animal to learn a new sequence.
Thus environmental variability increases search times, thereby
reducing optimal repertoire size (Eq. (2)). We have also assumed
that all behaviors are equally likely to enter a profitable sequence
(assumption 3). The upper bound to behavioral repertoire size
in Eq. (7), however, holds also when some behaviors are more
likely than others to enter rewarding sequences. The reason is that
(7) depends only on the vanishing of the first factor in Eq. (1),
while the probabilities of behaviors being part of the rewarding
sequence only appear in the second factor (the expression (n/A)l

would be replaced by (
n

i=1 pi)
l, where pi is the probability that the

i-th behavior in the repertoire enters the rewarding sequence). Of
course, in this case behavioral repertoireswould be under selection
to include the more useful behaviors at the possible exclusion of
less useful ones.

A seemingly restrictive assumption is the existence of a single
rewarded sequence in the environment (assumption 2). Many
rewarding sequences exist in real environments, differing in both
length and reward. Under such conditions, a learning strategymust
also determine how much time to spend searching for sequences
of different length. We show in Appendix C that natural selection
favors searching for sequences of a given length, using a behavioral
repertoire of the appropriate size for that length, as determined
above. Thus our previous conclusion, that large repertoire sizes
should be observed only in species with long lifespan and high
intelligence, also holds for environmentswith a varied distribution
of rewards. Another line of reasoning leads to the same conclusion.
We have assumed above that animals look for sequences of a fixed
length l, which matches the length of the rewarding sequence
(assumption 7). In addition to the theoretical argument just
given, two general findings about learning justify this assumption.
First, learning mechanisms operate within well-defined, typically
short time spans. For example, instrumental learning in rats and
pigeons becomes almost impossible if the animal is required to
remember stimuli for more than one or two minutes (Nelson
and Wasserman, 1978; Roper, 1983). This imposes an upper
bound on the length of sequences that can be learned. Second,
artificial selection experiments show that exploratory drive is
under robust genetic control (Dingemanse and Réale, 2005). Tryon
(1940), for example, significantly altered rat exploratory behavior
in just seven generations. Thus we expect natural selection to
tailor exploratory drive to a species’ needs. These findings further
support the idea that animals look predominantly for sequences of
behavior whose length matches their learning ability and lifespan.

6. Discussion

Our results suggest that intelligence, behavioral repertoire,
and lifespan co-evolve under the selection pressure for efficient
learning of functional behavior sequences. Specifically, increas-
ing lifespan and decreasing sequence search time (increasing
‘‘intelligence’’) are two ways in which an individual can perform
more rewarding sequences in a lifetime, paving the way for the
evolution of larger behavioral repertoires. Empirical data, although
by no means comprehensive, appear to support this coevolution-
ary scenario. Changizi (2003) shows that mammalian behavioral
repertoires scale as a power of encephalization, which is consis-
tent with Eq. (10) if we assume that encephalization is itself re-
lated to intelligence by a power law (recall that ‘‘intelligence’’ is
quantified by 1/s in Eqs. (8)–(10)). Eq. (10) also predicts that be-
havioral repertoire should correlate with lifespan. We could not
assess this correlation directly. Data on encephalization and lifes-
pan are reported in Hofman (1984, 1993) and Allman et al. (1993),
but include only a few of the species for which Changizi (2003)
provides estimates of repertoire size. A positive correlation exists
between lifespan and encephalization, as predicted both by our
model (as lifespan and encephalization are subject to similar selec-
tion pressures and both contribute to large repertoire size) and by
arguments based on brain–body physiological interactions (Hof-
man, 1993; Allman, 1999). A larger data set, containing information
on behavioral repertoire, lifespan, and encephalization for many
species, is required for a fuller test of our results.

Our model also has consequences for understanding compara-
tive cognition. Exploratory behavior (including play) can influence
both motor development (e.g., Nunes et al., 2004) and problem
solving (e.g., Benson Amram and Holekamp, 2012). Thus, to under-
stand species differences in intelligence, it might prove fruitful to
study variation in behavioral repertoire size and aspects of explo-
ration such as exploratory drive and duration of juvenile periods
(during which most learning occurs), in addition to investigating
cognitive mechanisms.

Appendix A. Alternative proof of Eq. (5)

To illustrate an alternative way of proving Eq. (5) we start with
the case of sequences of length l = 2. We imagine a sequence of
two actions is built first, and then we ask what is the probability
that the organism’s repertoire contains all actions in the sequence.
Constructing a sequence of length 2 can result in choosing twice
the same action (case 1) or in choosing two different actions (case
2). The two cases are mutually exclusive hence their probabilities
sum.

Case 1 occurs with probability A/A2, since there are A possible
ways of choosing the same action twice and A2 possible choices of
two actions (writing A/A2 rather than 1/A helps to see a pattern
later). In this case, the probability that the n different actions in
the organism’s repertoire include the single selected action is n/A.
Case 2 occurs with probability A(A − 1)/A2 (there are A(A − 1)
ways of choosing two different actions and A2 possible choices of
two actions). In this case, the probability that the repertoire has
both actions is n

A
n−1
A−1 (for the first action, one of n actions in the
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repertoire must match one of A possible actions; for the second
action, one of the remaining n−1 actions must match one of A−1
possible actions—not A because in case 2 the sequence is composed
of different actions). Thus the probability that the repertoire has
the two actions necessary to complete the sequence is
Pr(two actions in repertoire)

=
1
A

×
n
A

+
A(A − 1)

A2
×

n
A
n − 1
A − 1

=
n
A2

+
n(n − 1)

A2
=

n2

A2
(A.1)

which is the same as Eq. (5) for l = 2. The reasoning can be ex-
tended to sequences of length l > 2 as follows. The probability
that selecting l actions out of A results in k different actions is

Pr(k different actions) =
1
Al


l
k

 k−1
i=0

(A − i) (A.2)

where {
l
k } is the number of ways in which l actions can be dis-

tributed among k specific actions, and the product in Eq. (A.2) arises
because there are Aways of choosing the first of the k actions, A−1
ways of choosing the second, and so on. { l

k } is known as a Stirling
number of the second kind: it is the number of ways in which a
set of l elements can be partitioned into k non-empty sets, or the
number of ways in which l balls can be put into k boxes without
leaving any box empty (Graham et al., 1989). Note that the iden-
tity

l
k=1 Pr(k different actions) = 1 implies

l
k=1


l
k

 k−1
i=0

(A − i) = Al, (A.3)

a fact that we will use later. The probability that repertoire of n
different actions contains k specific actions (k ≤ n) is

Pr(repertoire has k actions) =

k−1
i=0

n − i
A − i

, (A.4)

see the case l = 2 above. Thus we have
Pr(l actions in repertoire)

=

l
k=1

Pr(k different actions)

× Pr(repertoire has k actions) (A.5)

=

l
k=1

1
Al


l
k

 k−1
i=0

(A − i)
k−1
i=0

n − i
A − i

(A.6)

=
1
Al

l
k=1


l
k

 k−1
i=0

(n − i). (A.7)

Using Eq. (A.3), we obtain that the sum is nl, resulting in Eq. (5) in
the main text. As an example, for l = 3 we have
Pr(3 actions in repertoire)

=
1
A3

3
k=1


3
k

 k−1
i=0

(n − i) (A.8)

=
1
A3


3
1


n +


3
2


n(n − 1)

+


3
3


n(n − 1)(n − 2)


(A.9)

=
1
A3

[n + 3n(n − 1) + n(n − 1)(n − 2)] (A.10)

=
n3

A3
. (A.11)
Appendix B. Existence and uniqueness of optimal repertoire
size

Here we prove that rl(n) in Eq. (1) has a unique maximum. For
this purpose, n can be considered as a continuous variable (n ≥ 1).
We define

fl(n) =

n
A

l
gl(n) =


T
l


+ 1 − lnl

so that rl(n) = fl(n)gl(n). We note that fl(n) is monotonically in-
creasing in n while gl(n) is monotonically decreasing. Let n̄ be the
zero of gl(n), n̄ =

l
√

(⌊T/l⌋ + 1)/l. We have

fl(1) = 1/Al fl(n̄) = (n̄/A)l

gl(1) = ⌊T/l⌋ + 1 − l gl(n̄) = 0.
(B.1)

We also have

f ′

l (n) = lnl−1/Al f ′

l (1) = l/Al f ′

l (n̄) = ln̄l−1/Al

g ′

l (n) = −l2nl−1 g ′

l (1) = −l2 g ′

l (n̄) = −l2n̄l−1
(B.2)

and

r ′

l (n) = fl(n)g ′

l (n) + f ′

l (n)gl(n). (B.3)

The existence of at least one maximum in [1, n̄] derives from the
fact that rl(n) is continuous and that, according to Eqs. (B.1) and
(B.2), it is positive and increasing at n = 1 while it is zero and de-
creasing at n̄. The uniqueness of the maximum derives from the
fact that, according to Eq. (B.3), the maximum satisfies

fl(n)
gl(n)

= −
f ′

l (n)
g ′

l (n)
. (B.4)

The l.h.s increases in [1, n̄] from a positive value of fl(1)/gl(1) =

1/

Al(⌊T/l⌋ + 1 − l)


to infinity, while the r.h.s. is constant at

−f ′

l (n)/g
′

l (n) = 1/lAl, which is higher than the previous value if
T ≫ l. Thus the two sides of Eq. (B.4) equal each other only once.

Appendix C. Extension to general environments

Let ql be the frequency of rewarding sequences of length l, Rl
the expected reward, and ul the fraction of the available time that
the animal allocates to sequences of length l. A straightforward
extension of the reasoning above shows that the quantity to be
maximized to find the optimal repertoire size is now

r =

lmax
l=1

qlRl
nl

Al


ulT
l


+ 1 − lslnl



=

lmax
l=1

qlRlrl(n, ul),

where lmax is the maximum sequence length,
lmax

l=1 ul = 1, and
rl(n, ul) is defined as rl(n) in Eq. (8), but with a reduced number of
actions, ulT . Clearly the optimal strategy is to focus on sequences
of length such that qlRlrl(n⋆

l , 1) is maximized (n⋆
l is the optimal

behavioral repertoire for sequences of length l and unitary reward,
i.e., the solution of Eq. (6)). Any departure from such strategy,
in fact, would devote part of the animal’s time to sequences
with lower rewards. (Also note that longer sequences must carry
exponentially larger reward to be profitable, because the reward
that can be gained in a lifetime is an exponentially decreasing
function of sequence length, see Fig. 1, right, and Eq. (1).)
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