
debris flow that carried the still partially articu-
lated bodies deeper into the cave, to deposit them
along a subterranean stream (Fig. 3).
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Why Copy Others? Insights from the
Social Learning Strategies Tournament
L. Rendell,1* R. Boyd,2 D. Cownden,3 M. Enquist,4,5 K. Eriksson,5,6 M. W. Feldman,7 L. Fogarty,1
S. Ghirlanda,5,8 T. Lillicrap,9 K. N. Laland1*

Social learning (learning through observation or interaction with other individuals) is widespread
in nature and is central to the remarkable success of humanity, yet it remains unclear why
copying is profitable and how to copy most effectively. To address these questions, we organized a
computer tournament in which entrants submitted strategies specifying how to use social learning and
its asocial alternative (for example, trial-and-error learning) to acquire adaptive behavior in a
complex environment. Most current theory predicts the emergence of mixed strategies that rely on
some combination of the two types of learning. In the tournament, however, strategies that relied
heavily on social learning were found to be remarkably successful, even when asocial information was
no more costly than social information. Social learning proved advantageous because individuals
frequently demonstrated the highest-payoff behavior in their repertoire, inadvertently filtering
information for copiers. The winning strategy (discountmachine) relied nearly exclusively on social
learning and weighted information according to the time since acquisition.

Human culture is widely thought to under-
lie the extraordinary demographic suc-
cess of our species, manifest in virtually

every terrestrial habitat (1, 2). Cultural processes
facilitate the spread of adaptive knowledge, accu-
mulated over generations, allowing individuals to
acquire vital life skills. One of the foundations of
culture is social learning, learning influenced by
observation or interaction with other individuals
(3), which occurs widely in various forms across
the animal kingdom (4). Yet it remains something
of a mystery why individuals profit by copying
others and how best to do this.

At first sight, social learning appears advan-
tageous because it allows individuals to avoid

the costs, in terms of effort and risk, of trial-and-
error learning. However, social learning can also
cost time and effort, and theoretical work reveals
that it can be error-prone, leading individuals to
acquire inappropriate or outdated information in
nonuniform and changing environments (5–11).
Current theory suggests that to avoid these
errors individuals should be selective in when
and how they use social learning, so as to
balance its advantages against the risks inherent
in its indiscriminate use (9). Accordingly, natural
selection is expected to have favored social learn-
ing strategies, psychological mechanisms that spec-
ify when individuals copy and from whom they
learn (12, 13).

These issues lie at the interface of multiple
academic fields, spanning the sciences, social
sciences and humanities, from artificial intelli-
gence to zoology (5, 14–18). Formal theoretical
analyses [e.g., (2, 5–9, 11–13, 19)] and exper-
imental studies (20, 21) have explored a small
number of plausible learning strategies. Although
insightful, this work has focused on simple rules
that can be studied with analytical methods and
can only explore a tiny subset of strategies. For a
more authoritative understanding of when to ac-
quire information from others and how best to do
so, the relative merits of a large number of alter-
native social learning strategies must be assessed.
To address this, we organized a computer tourna-
ment in which strategies competed in a complex
and changing simulation environment. €10,000
was offered as first prize. The organization of
similar tournaments by Robert Axelrod in the
1980s proved an extremely effective means for

1Centre for Social Learning and Cognitive Evolution, School
of Biology, University of St. Andrews, Queen's Terrace, St.
Andrews, Fife KY16 9TS, UK. 2Department of Anthropology,
University of California, Los Angeles, CA 90095, USA.
3Department of Mathematics and Statistics, Queen's Uni-
versity, Jeffery Hall, University Avenue, Kingston, Ontario K7L
3N6, Canada. 4Department of Zoology, Stockholm University,
11691 Stockholm, Sweden. 5Centre for the Study of Cultural
Evolution, Stockholm University, 11691 Stockholm, Sweden.
6School of Education, Culture, and Communication, Mälardalen
University, 72123 Västerås, Sweden. 7Department of Bio-
logical Sciences, Stanford University, Stanford, CA 94305, USA.
8Department of Psychology, University of Bologna, 40127
Bologna, Italy. 9Centre for Neuroscience Studies, Queen's
University, 18 Stuart Street, Kingston, Ontario K7L 3N6,
Canada.

*To whom correspondence should be addressed. E-mail:
ler4@st-andrews.ac.uk (L.R.); knl1@st-andrews.ac.uk (K.N.L.)

9 APRIL 2010 VOL 328 SCIENCE www.sciencemag.org208

RESEARCH ARTICLES
on N

ovem
ber 13, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


investigating the evolution of cooperation and is
widely credited with invigorating that field (22).

The tournament. The simulated environment
for our tournament was a “multiarmed bandit”
(18), analogous to the “one-armed bandit” slot ma-
chine but with multiple “arms.” In the tourna-
ment, the bandit had 100 arms, each representing
a different behavior and each with a distinct pay-
off drawn independently from an exponential
distribution. Furthermore, we posited a tempo-
rally varying environment realized by changing
the payoffs with a probability, pc, per behavior
per simulation round, with new payoffs drawn
from the same distribution. The possibility of
acquiring outdated information is seen as a crucial
weakness of social learning [e.g., (6)].

Entered strategies had to specify how individ-
ual agents in a finite population choose between
three possible moves in each round, namely In-
novate, Observe, andExploit. Innovate represented
asocial learning, that is, individual learning stem-
ming solely through direct interaction with the
environment, for example, through trial and error.
An Innovate move always returned accurate in-
formation about the payoff of a randomly selected
behavior previously unknown to the agent. Ob-
serve represented any form of social learning or
copying through which an agent could acquire a
behavior performed by another individual, whether
by observation of or interaction with that individ-
ual (3). An Observe move returned noisy infor-
mation about the behavior and payoff currently
being demonstrated in the population by one or
more other agents playing Exploit. Playing Ob-
serve could return no behavior if none was dem-
onstrated or if a behavior that was already in the
agent’s repertoire is observed and always occurred
with error, such that the wrong behavior or wrong
payoff could be acquired. The probabilities of
these errors occurring and the number of agents
observed were parameters we varied. Lastly, Ex-
ploit represented the performance of a behavior
from the agent’s repertoire, equivalent to pulling
one of the multiarmed bandit’s levers. Agents
could only obtain a payoff by playing Exploit.

Evolutionary dynamics were realized by a
death-birth process (23). Agents died with a con-
stant probability of 1/50 per round and were
replaced by the offspring of another agent. The
probability that an agent was chosen to reproduce
was proportional to its mean lifetime payoff, cal-
culated as its summed payoff from playing Exploit
divided by the number of simulation rounds that it
had been alive. The obtained payoffs thus directly
affected an agent’s fitness. Offspring inherited their
parent’s strategy unlessmutation occurred, inwhich
case the offspring was given a strategy randomly
chosen from the others playing in that simulation.
We recorded the average frequency of each strategy
in the population over the last 2500 rounds of each
10,000-round simulation and gave each strategy a
score that was the mean of these values over the
simulations in which it participated.

Axelrod’s cooperation tournaments were based
on a widely accepted theoretical framework for

the study of cooperation: the Prisoner’s Dilemma.
Although there is no such currently established
framework for social learning research, multi-
armed bandits have beenwidely deployed to study
learning across biology, economics, artificial in-
telligence research, and computer science [e.g.,
(18, 24–28)] because they mimic a common prob-
lem faced by individuals who must make deci-
sions about how to allocate their time in order to
maximize their payoffs. Multiarmed bandits cap-
ture the essence of many difficult problems in the
real world, for instance, where there are many
possible actions, only a few of which yield a high
payoff; where it is possible to learn asocially or
through observation of others; where copying
error occurs; and where the environment changes.
When the payoffs of a multiarmed bandit change
over time as in our tournament, the bandit is

termed “restless,” and the framework has the
advantage of proving extremely difficult, perhaps
impossible, to optimize analytically [e.g., (29)].
Thus, we could be confident that our tournament
would be a genuine challenge for all entrants.

In all other respects, we attempted to keep the
model structure as simple as possible to maintain
breadth of applicability and ease of understanding
and to attract the maximum number of partici-
pants. We balanced this simplicity with the inclu-
sion of three features that we considered critical,
namely, individual memories (to facilitate learn-
ing); a degree of error associated with social
learning (the existence of which nearly all the cur-
rent literature agrees on); and replicator dynamics
with mutation, to allow an evolutionary process.
We used a common currency for costs (time) and
made each possible move cost the same to

Fig. 1. Performance of entered strategies. (A) Ranked overall strategy scores in the final stage
of the tournament (cWYTLWPD indicates copyWhenYoungThenLearnWhen-PayoffsDrop; wTGGTGS,
whenTheGoingGetsToughGetScrounging). Scores are averaged over all final stage simulations. (Inset)
Scores for all 104 entered strategies. Dotted black line indicates the 10 highest scoring strategies; solid red
line indicates the 24 strategies entered into further pairwise conditions. Error bars are T SEM but mostly not
visible because all SEMs < 0.004. (B) Ranked scores from those final-stage simulations in which conditions
were chosen at random (33), and under the same conditions but with the tournament winner,
discountmachine, recoded to learn only with Innovate and never Observe (red). (C) As in (B) but comparing
original results with pcopyActWrong fixed at 0 (red). (D) Average individual fitness, measured as mean lifetime
payoff, in populations containing only single strategies for each of the final-stage contestants, ranked by
tournament placing. Data are average values from the last quarter of single simulations, which were run
under the same conditions as the first stage of the tournament and also under the same conditions except
with pcopyActWrong = 0. The horizontal dashed line represents the mean lifetime payoff of individuals when all
strategies are played together under the same conditions. Strategies relying exclusively on social learning are
those ranked 1, 2, and 4.
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minimize structural assumptions about learning
costs. The agents in our simulations could not iden-
tify or communicate directly with each other, an as-
sumption that precluded the deployment of some
model-based strategies present in the cultural evo-
lution literature [e.g., prestige bias (30)]. Nonethe-
less, we reasoned that the simplicity, accessibility,
and generality of the proposed tournament struc-
ture outweighed the benefits of further complexity.

Analyses. We received 104 entries, most,
although not all (31), from academics across a
wide range of disciplines and from all over the
world. The tournament was run in two stages.
Strategies first competed in pairwise round-
robin contests, taking turns to invade or to resist
invasion by another strategy under a single set of
conditions (32). The 10 best performers progressed
to a second stage, where all 10 strategies com-
peted simultaneously in melee contests over a
range of simulation conditions (33). Scores in
the first stage ranged from 0.02 to 0.89 (with a
theoretical maximum of 1), indicating consider-
able variation in strategy effectiveness (Fig. 1A).

Statistical analysis indicates that much of
this variation is explained by the extent to which
strategies used social learning, more social
learning being associated with higher payoffs.
We examined the factors that made strategies
successful by using linear multiple regression
and model selection by using Akaike’s infor-
mation criterion (AIC) (33). The best-fit model
contained five predictors (Table 1). Two pre-
dictors had effect sizes more than twice the
magnitude of the others: the proportion of those
learning moves that were Observe and the var-
iance in the number of rounds before a strategy
first played Exploit. The proportion of learning
moves dedicated to Observe had a strong positive
effect on a strategy’s score (Fig. 2A). Although
Innovate cost no more than Observe, the best
strategies relied almost entirely on social learning;
that is, when learning, they almost exclusively
chose Observe rather than Innovate. The propor-
tion of moves that involved learning of any kind
had a negative effect, indicating that it was de-
trimental to invest too much time in learning be-

cause payoffs came only through Exploit. The data
reveal an unexpectedly low optimum proportion
of time spent learning (Fig. 2C).

The timing of (either form of) learning also
emerged as a crucial factor. Strategies with a
high variance in the number of rounds spent
learning before the agent first played Exploit,
caused by occasionally waiting too long before
beginning to exploit, tended to do poorly (Fig.
2B). Conversely, strategies that engaged in longer
bouts of exploiting between learning moves tended
to do significantly better (Fig. 2D). Successful
strategies were able to target their learning to co-
incide with periods when average population
payoffs dropped, indicating a change in the en-
vironment that had rendered a behavior less
profitable (Fig. 2E). This pattern was observable
statistically as the lagged correlation between the
time series of average payoff and the proportion
of learning moves in the population. We calcu-
lated Pearson correlation coefficients between the
average payoff at simulation round t and the
proportion of learning moves at round t + D, with
0 < D < 10,000. Accurate targeting of learning to
periods where payoffs are dropping produces
large negative correlation coefficients for small
D. We compared the correlations for populations
containing the 10 strategies that progressed to the
final stage with the correlations from simulations
run with strategies ranked 78 to 88 in the first
stage of the tournament (i.e., markedly less-
successful strategies). For the final-stage strategies,
the strongest negative correlations were always
found with lags of less than three (D < 3) and were
significantly stronger than the strongest correlations
found for the less-successful strategies [two-sample
t test, P < 0.0001 (fig. S9)]. Successful strategies

Fig. 2. Key variables affecting strategy performance. (A) Final score
plotted against the proportion of learning (i.e., Innovate or Observe)
moves that were Observe in the first tournament stage. (B) Final score
against the variance in the number of rounds before the first Exploit. (C)
Final score against the proportion of rounds spent learning in the first
tournament stage. (D) Final score against the mean number of rounds
between learningmoves. In (A) to (D), each point represents the average
value for one strategy. (E) Time series plots of the per-round average
individual mean lifetime payoff in the population and proportion of
learning moves, from 1000 simulation rounds run under identical con-
ditions with the final-stage contestants (top) and the strategies ranked
79 to 88 in the first tournament stage (bottom).

Table 1. Parameters of the AIC best-fit model predicting strategy scores in the first, pairwise,
tournament stage. Adjusted R2 = 0.76. Dash entry indicates not applicable.

Predictor
Effect
size (b
weight)

b SE t p(>|t|)

(Intercept) – 0.32 0.06 5.43 <0.0001
Proportion of learning that is Observe 0.42 0.43 0.06 7.15 <0.0001
Variance in rounds to first Exploit* –0.42 –0.06 0.01 –6.62 <0.0001
Proportion of learning moves –0.17 –0.34 0.12 –2.79 0.0063
Average rounds between learning moves 0.16 0.01 <0.01 3.09 0.0026
Estimate pc? (yes = 1, no = 0) –0.07 –0.04 0.03 –1.47 0.1452
*We used the natural log of this predictor to give a better linear relationship.
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targeted learning to periods when it was likely to
be most valuable (i.e., when the environment
changed) but otherwise minimized learning,
allowing them both to improve their payoffs
through learning and to maintain high rates of
exploiting (Table 1). The issue of when to break
off exploiting current knowledge in order to in-
vest in further knowledge gain, the exploitation/
exploration tradeoff, had not been incorporated
into previous theory in this field, and our tourna-
ment introduces this dimension into the domain
of understanding social learning.

The strategy discountmachine (34) emerged
as a convincing winner (Fig. 1A) in the second
stage of the tournament, which pitted the 10 best
performers in the first stage against each other in
simultaneous competition under a range of con-
ditions (it was also the winner of the pairwise
phase). Strikingly, both discountmachine and
the runner-up, intergeneration, relied nearly ex-
clusively on Observe as their means to learn
(Fig. 3, C and D), and at least 50% of the
learning of all of the second-stage strategies was
Observe. Although all second-stage strategies
increased their amount of learning as the rate of
environmental change increased, the best per-
formers capped the level of learning to a max-

imum to maintain payoffs (Fig. 3A). The winning
strategy stood out by spreading learning more
evenly across agent life spans than any other
second-stage strategy (Fig. 3B). It did this by,
uniquely among the finalists, using a proxy
of geometric discounting to estimate expected
future payoffs from either learning or playing
Exploit.

Winning strategies also relied more heavily
on recently acquired than older information.
The top two strategies shared the following
expression for estimating the expected payoff
(wexpected) of a known behavior:

wexp ¼ w(1 − pest)
i þ west(1 − (1 − pest)

i) ð1Þ

where w is the current payoff held in the agent’s
memory and acquired i rounds ago, west is the
estimated mean payoff for all behavior, and pest
is an estimate of pc, the probability of payoff
change. This expression weighs expected pay-
offs increasingly toward an estimated mean as
the time since information was last obtained in-
creases. Given the uncertain and potentially con-
flicting nature of information obtained through
social learning, the winning strategy used a fur-
ther weighing based on its estimate of pc, dis-

counting older social information more severely
in more variable environments than in relatively
constant ones. No other strategies in the melee
round evaluated payoffs in this way.

In the melee round, simulations were run
to explore the effects of varying the rate of
environmental change ( pc); the probability
and scale of errors associated with social
learning; and the relative costs of the two forms
of learning, the last achieved by increasing the
number of other agents sampled when playing
Observe (social learning being cheap when
multiple individuals are observed). We found
the tournament results to be unexpectedly robust
to variation in these factors (Fig. 4). The first-
and second-place strategies switched rank in
some conditions, namely when the environment
was more stable (Fig. 4A) and when social learn-
ing was cheap relative to asocial learning [i.e., the
number of agents sampled by Observe was high
(Fig. 4D)]. Increasing the probability and the mag-
nitude of errors associated with social learning
made nearly no difference to the strategy rank-
ings (Fig. 4, B and C); even at extreme values,
strategies heavily reliant on social learning thrived
(fig. S11). This implies that social learning is of
widespread utility even when it provides no in-

Fig. 3. Why the winner won. Error bars are T SEM but mostly not visible
because all SEMs < 0.003. (A) Proportion and (B) timing of learning moves
in the final tournament stage. First and second place strategies are
highlighted; the rank of the other strategies is indicated by shading, with

darker shading indicating higher rank. (C and D) Variation in the proportion
of learning moves that were Observe with (C) variation in the rate of
environmental change ( pc) and (D) the number of agents sampled when
playing Observe (nobserve), in the final tournament stage.

Fig. 4. Social learning dominates irrespective of cost across a broad range of
conditions. Plots show mean strategy scores (Tvariance) across systematic
melee conditions with respect to (A) variation in the rate of environmental
change (pc), (B) scopyPayoffError, the standard deviation of a normally distributed
error applied to payoffs returned by Observe, (C) pcopyActWrong, the probability

that Observe returned a behavior selected, at random from those not actually
observed, and (D) the number of other agents sampled when playing Observe
(nobserve). First and second place strategies are highlighted; the rank of the
other strategies is indicated by shading with darker shading indicating higher
rank. Error bars are T SEM but mostly not visible because all SEMs < 0.01.
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formation about payoffs. Nor does this utility rest
on our assumption that copying errors can in-
troduce new behaviors (fig. S13). These are
surprising results, given that the error-prone
nature of social learning is widely thought to be
a weakness of this form of learning, whereas the
ability to copy multiple models rapidly or pref-
erentially copy high-payoff behavior are re-
garded as strengths (1). Strategies relying heavily
on social learning did best irrespective of the
number of individuals sampled by Observe
(Fig. 4D). These findings are particularly un-
expected in the light of previous theoretical
analyses (5–8, 10, 11, 13), virtually all of which
have posited some structural cost to asocial learning
and errors in social learning.

Previous theory also suggests that reliance
on social learning should not necessarily raise
the average fitness of individuals in a population
(6, 7, 10) and may even depress it (35). How-
ever, this was not the case for the strategies suc-
cessful enough to make the second stage; in this
second round, average individual fitness inmixed-
strategy populationswas positively correlatedwith
the proportion of learning in the population that
was social [r = 0.16, P = 0.02 (fig. S9)]. In con-
trast, for poorly performing strategies the rela-
tionship between average individual fitness and
the rate of social learning was strongly negative
(r = –0.71, P < 0.001; fig. S9). This highlights
the importance of the strategic use of social learn-
ing in raising the average fitness in a population
(5, 12, 19).

Strategies that did well were not, however,
those that maximized average individual fitness
when fixed in a population. Instead, we found a
strong inverse relationship between the mean
fitness of individuals in populations containing
only one strategy and that strategy’s performance
in the tournament (Fig. 1D). Furthermore, themean
lifetime payoff in the population when all strategies
competed together under the same conditions was
lower than the levels achieved by lower-ranking
strategies when playing alone. This illustrates the
parasitic effect of strategies that rely heavily on
Observe (e.g., discountmachine, intergeneration,
wePreyClan, and dynamicAspirationLevel; ranked
1, 2, 4, and 6; all played Observe on at least 95%
of learning moves). From this we can conclude

that strategies using amixture of social and asocial
learning are vulnerable to invasion by those using
social learning alone, which may result in a pop-
ulation with lower mean fitness. An established
rule in ecology specifies that, among competitors
for a resource, the dominant competitor will be the
species that can persist at the lowest resource level
(36). Recent theory suggests an equivalent rule
may apply when alternative social learning strat-
egies compete in a population: The strategy that
eventually dominates will be the one that can per-
sist with the lowest frequency of asocial learn-
ing (13). Our findings are consistent with this
hypothesis.

Discussion. The most important outcome of
the tournament is the remarkable success of
strategies that rely heavily on copying when
learning in spite of the absence of a structural
cost to asocial learning, an observation evoca-
tive of human culture. This outcome was not
anticipated by the tournament organizers, nor by
the committee of experts established to oversee
the tournament, nor, judging by the high var-
iance in reliance on social learning (Fig. 2A), by
most of the tournament entrants. Although the
outcome is in some respects consistent with
models that used simpler environmental conditions
and in which individual learning is inherently
costly relative to social learning (5), in our tour-
nament the environment was complex and there
was no inherent fitness cost to asocial learning.
Indeed, there turned out to be a considerable
cost to social learning because it failed to intro-
duce new behavior into an agent’s repertoire in
53% of all the Observe moves in the first tour-
nament phase, overwhelmingly because agents
observed behaviors they already knew. Nonethe-
less, social learning proved advantageous be-
cause other agents were rational in demonstrating
the behavior in their repertoire with the highest
payoff, thereby making adaptive information
available for others to copy. This is confirmed by
modified simulations wherein social learners
could not benefit from this filtering process and
in which social learning performed poorly (fig.
S12). Under any random payoff distribution, if one
observes an agent using the best of several
behaviors that it knows about, then the expected
payoff of this behavior is much higher than the

average payoff of all behaviors, which is the
expected return for innovating. Previous theory
has proposed that individuals should critically
evaluate which form of learning to adopt in order
to ensure that social learning is only used adaptively
(11), but a conclusion from our tournament is that
this may not be necessary. Provided the copied
individuals themselves have selected the best be-
havior to perform from at least two possible op-
tions, social learning will be adaptive. We suspect
that this is the reason why copying is widespread in
the animal kingdom.

That social learning was critical to the
success of the winning strategy is shown by
the results of running the random conditions
portion of the second tournament stage with a
version of discountmachine recoded to learn
only by Innovate: it placed last (Fig. 1B). We
also found that discountmachine dominated its
recoded cousin across a large portion of the plau-
sible parameters space with respect to environ-
mental change (Fig. 5), with payoffs needing to
change with 50% probability per round before
the Innovate-only version could gain a foothold.
This is another way that our tournament chal-
lenges existing theory, which predicts that evolu-
tion will inevitably lead to a stable equilibrium
where both social and asocial learning persist in a
population [e.g., (6)].

It is important to note that, although our
tournament may offer greater realism than past
analytical theory, the simulation framework
remains a simplification of the real world where,
for instance, model-based biases and direct inter-
actions between individuals (15) operate. It re-
mains to be established to what extent our results
will hold if these are introduced in future tourna-
ments, where the specific strategies that prospered
here may not do so well. Nonetheless, the basic
generality of the multiarmed bandit problem we
posed lends confidence that the insights derived
from the tournament may be quite general.

The tournament also draws attention to the
importance of social learning errors as a source
of adaptive behavioral diversity. In our tourna-
ment, there was a probability, pcopyActWrong, that
a social learner acquired a randomly selected
behavior rather than the observed behavior.
Modeling social learning errors in this way
means new behavior can enter the population
without explicit innovation. The importance of
these errors is illustrated by the fact that
strategies relying exclusively on social learning
were unable to maintain high individual fitness
when pcopyActWrong = 0 (Fig. 1D). This does not
mean that the success of the winning strategy
depended on the condition pcopyActWrong > 0; in
the presence of other strategies providing the
necessary innovations, discountmachine and
intergeneration maintain their respective first
and second places when pcopyActWrong = 0 (Fig.
1C). Other models have highlighted copying
errors as potentially important in human cultural
evolution (37), but the extent to which adaptive
innovations actually come about through such

Fig. 5. Results of a series of simulations
in which the tournament winner played
against a version of itself altered to learn
only by Innovate. The rate of environ-
mental change (pc) was systematically
varied. Five simulations were run at each
level of pc. Other parameters were fixed
at nobserve = 1, pcopyActWrong = 0.05, and
spayoffError = 1.
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errors is an important empirical question ripe for
investigation.

The ability to evaluate current information
on the basis of its age and to judge how valuable
that information might be in the future, given
knowledge of rates of environmental change, is
also highlighted by the tournament. There is lim-
ited empirical evidence that animals are able to
discount information on the basis of the time
since it was acquired (38), but little doubt that
humans are capable of such computation. Our
tournament suggests that the adaptive use of
social learning could be critically linked to such
cognitive abilities. There are obvious parallels
with the largely open question of mental time
travel, the ability to project current conditions into
the future, in nonhumans (39), raising the hypoth-
esis that this cognitive ability could be one factor
behind the gulf between human culture and any
nonhuman counterpart. A critical next step will
be to evaluate experimentally to what extent hu-
man behavior mirrors that of the tournament
strategies [e.g., (40)]. By drawing attention to the
importance of adaptive filtering by the copied
individual and temporal discounting by the copier,
the tournament helps to explain both why social
learning is common in nature and why human
beings happen to be so good at it.
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Two-Dimensional Phonon Transport
in Supported Graphene
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The reported thermal conductivity (k) of suspended graphene, 3000 to 5000 watts per meter per
kelvin, exceeds that of diamond and graphite. Thus, graphene can be useful in solving heat
dissipation problems such as those in nanoelectronics. However, contact with a substrate could
affect the thermal transport properties of graphene. Here, we show experimentally that k of
monolayer graphene exfoliated on a silicon dioxide support is still as high as about 600 watts per
meter per kelvin near room temperature, exceeding those of metals such as copper. It is lower
than that of suspended graphene because of phonons leaking across the graphene-support
interface and strong interface-scattering of flexural modes, which make a large contribution to
k in suspended graphene according to a theoretical calculation.

Since graphene was first exfoliated from
graphite and studied on dielectric substrates
in 2004 (1), the monatomic layer of carbon

atoms has attracted great interest for electronic
applications because of superior charge mobility
(2) and mechanical strength (3), as well as its

compatibility with existing planar silicon devices.
Other carbon allotropes, including diamond (4),
graphite (5), and carbon nanotubes (CNTs) (6–8),
have the highest thermal conductivity (k) values
reported because the strong bonding of the light
carbon atoms results in a large phonon contribu-
tion to k despite a much smaller electronic
component. For similar reasons, graphene is
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players periodically, rather than exploring the environment alone.
changing environment competed against each other; the winning strategy involved sampling the behaviors of other 

the tit-for-tat strategy. In the 2008 tournament, 100 social learning strategies designed to cope with a−−emerged
 which strategies for playing the iterated prisoner's dilemma game were pitted against each other until an overall winner

 (p. 208) elected to copy Robert Axelrod's 1979 tournament in et al.Rendell Does it pay to copy what others do? 
It Pays to Be a Copy Cat
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