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a b s t r a c t

In a species capable of (imperfect) social learning, howmuch culture can a population of a given size carry?
And what is the relationship between the individual and the population? In the first study of these novel
questions, here we develop a mathematical model of the accumulation of independent cultural traits in a
finite population with overlapping generations.
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1. Introduction

In a species capable of invention and social learning, popula-
tions will accumulate cultural traits. Examples include culturally
acquired behaviors in chimpanzee populations and song elements
in bird populations. The most prominent example is, of course, the
massive accumulation of culture in historical and modern human
populations. An essential feature of human culture in large popula-
tions is that every single individual carries a lot of cultural elements
but still, only a fraction of the total amount in the population.
It is possible to measure the amount of culture (suitably

defined) in a population. For instance, biologists have counted the
number of bird song elements in different populations (Lynch,
1996), and linguists study the size of vocabularies in human
languages. However, there seem to have been little attempts at
developing a theory of cultural accumulation, and none that takes
individuals’ share of the total amount of culture into account. This
is our aim in the present paper. The key assumption thatmakes our
model amenable to analysis is that traits are independent of each
other, i.e., the presence of one trait does not affect the probability of
acquiring another trait. Although it is obvious that there existmany
interesting dependencies within human culture, we believe that
making an assumption of independence is a very reasonable first
step in the development of a theory of how culture accumulates.
Cultural accumulation is likely to have been a crucial compo-

nent of human ecological success, as a very large number of dif-
ferent inventions are needed for the survival and sustainment of
billions of humans across a great variety of environments on Earth
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(Richerson and Boyd, 2005). However, every single cultural ele-
ment may typically have only marginal importance, and in this
paper we are not interested in effects on reproductive fitness. In
other words, we assume traits to be neutral in terms of biologi-
cal evolution—but not neutral in terms of cultural evolution. In-
deed, thanks to the independence assumption, our model can ac-
commodate variation between cultural traits in howeasily they are
invented and socially transmitted.
To the best of our knowledge, the only previous models

of cultural accumulation are by Enquist and Ghirlanda (2007)
and Enquist et al. (2008). These models are macroscopic and
deterministic, i.e., they work at the population level and ignore
individuals and random processes. The basic findings in these
models are:

(1) If the innovation rate is constant and a constant proportion
of culture is lost, then the amount of culture carried by the
population will reach an equilibrium.Well-known examples of
domains where the number of variants seems to have reached
equilibria include words in use in languages, or baby names in
use in a country.

(2) If the innovation rate grows with the amount of culture, then
exponential growth is possible. Several cultural domains, such as
operas or mathematical theorems, seem to show exponential
growth (Lehman, 1947; Enquist et al., 2008).

Ourmodel offers the firstmicroscopic approach to the first case,
where the accumulation process reaches an equilibrium. Since we
are interested in the effects of population size our model is based
on a finite population, and hence the evolutionary process includes
both innovation and drift. This is reminiscent of the neutral theory
of genetic evolution (see e.g. Kimura and Crow, 1964; Futuyma,
1997) where genetic drift and mutations contribute to genetic
diversity and genetic change. Similar random processes have been
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studied previously also in the context of cultural evolution, e.g. of
bird song (Lynch et al., 1989; Lynch and Baker, 1993; Lynch, 1996).
In many birds the young males learn their songs from their fathers
or from neighboring males, and new songs are also regularly
formed (Catchpole and Slater, 1995). Lynch and coworkers used a
‘haploid version’ of the genetic neutral model and found that the
distribution of song types in wild bird populations is consistent
with neutral cultural evolution. In another line of research, R.A.
Bentley and coworkers have studied a number of human cultural
traits that may be (roughly) neutral, like baby names, dog breeds
and pottery designs (Hahn and Bentley, 2003; Herzog et al.,
2004; Bentley et al., 2004). In these studies, empirical data of
the frequency distribution of variants are shown to be consistent
with a random copying model, where individuals obtain their
cultural variants either from randomly drawn cultural parents or
rare innovations. (This is mathematically equivalent to the infinite
alleles version of the Wright–Fisher model in population genetics;
in contrast, the model we present is a generalization of the infinite
alleles version of the Moran model, cf. Ewens (2004).)
Both Bentley’s and Lynch’s studies illustrate that cultural

neutral theory, in contrast with the genetic theory, is concerned
with expressed traits or with the phenotype. Another difference
that is not exploited in the above studies is that, while diploid
organisms carry at most two alleles at an autosomal locus, a
single individual may carry arbitrarily many cultural traits. For
instance, in the case of bird song a more refined model would
allow individuals to learn any number of song elements rather
than one complete song. Learning of any number of elements can
be described as individual accumulation of culture. The theory of
cultural accumulation that we develop here would then predict
both the total number of song elements in the populations and the
average number of song elements per individual.
The paper is organized as follows. Section 2 describes ourmodel

in detail, and the main results of our mathematical analysis. In
Section 3 we use these results to analyze the effects of various
parameters on cultural accumulation, both on population level
and individual level. We can also identify a shortcoming in the
macroscopic accumulation models of Enquist and Ghirlanda, and
we discuss its consequences. Section 4 deals with non-neutral
evolution. Finally, in Section 5 we discuss what we have learned
from our analysis. The Appendix contains the detailed mathemat-
ical analysis of the model and a comparison between simulations
when generations are taken to be either discrete or overlapping.

2. Cultural accumulation models

We will make the standard discreteness assumptions within
cultural evolution modeling. To begin with, cultural traits are
distinct entities, so social learners either obtain the trait or not.
Further, we will assume traits in our models to be fitness-neutral,
i.e., they incur no reproductive advantages for individuals who
carry them. We will however allow for a cultural filter that weeds
out traits that people do not like, for instance traits that do not
fulfill their functions or are complicated to learn.
We assume that cultural transmission is never certain by

introducing a, the social learning efficiency, which is simply the
success rate of transmission. In other words, with probability 1−a
an individual fails in obtaining the cultural trait of the parent,
yielding a loss of culture due to imperfect transmission.
In order to study cultural accumulation in individuals, we

will assume traits that coexist independently of each other. For
instance, whether an individual has a word A in her vocabulary is
assumed not to interact with her capacity of learningword B. Thus,
individuals may carry many traits, and therefore both society and
the individualwill accumulate culture. However, aswewill discuss
shortly, our model can also be given an interpretation in terms
of mutually exclusive variants. Of course, in reality many cultural
traits will be neither perfectly independent nor perfectly mutually
exclusive. The effects of linkage of traits form an important topic
for future research, towards which the present model is a stepping
stone.
Finally our model assumes overlapping generations, where

only one individual leaves the population in each round. In the
Appendix we relax this assumption to test the robustness of our
model.

2.1. The random copying model with accumulation and overlapping
generations

We will refer to our model as the cultural accumulation model
(CAM). It assumes a population of N individuals, each of whom is
carrying an individual set of traits. The following happens in each
timestep.
Phase 1: A random individual leaves the population.
Phase 2: A new individual enters the population and chooses one

random individual as her cultural parent. For each trait
of the cultural parent, the new individual independently
obtains it with probability a, the learning efficiency.

Phase 3: The new individual invents a random number of traits
with expected value µ. (This random number does not
have to be independent of phase 2.)

2.2. Mathematical analysis

The outcome of our model of cultural evolution is that cultural
traits are invented, possibly spread, finally to be replaced by new
traits. At any given time, a certain trait vwill be carried by a certain
number of individuals, which number we call the popularity of v.
In the Appendix, we study how the popularity distribution of traits
develops over time, and we find its unique equilibrium.
Starting with no culture at time 0, we will denote the complete

popularity distribution at time t by a column vector f(t) =(
f (t)1 , . . . , f

(t)
N

)T
, where f (t)k is the expected number of traits of

popularity k at time t . (It is impossible to have popularity larger
than the size of the entire population, so for all k > N we
necessarily have f (t)k = 0.)
In the Appendix, we derive the recursion

f(t+1) = Af(t) + (µ, 0, 0, . . . , 0)T ,
where A is a certain N-by-N tridiagonal matrix. Assuming f(0) = 0,
we then obtain

f(t) =
(
I+ A+ A2 + · · · + At−1

)
(µ, 0, 0, . . . , 0)T . (1)

In the Appendix we also obtain the following formula for the
expected number of traits of popularity k when the process has
reached its stationary distribution:

fk = lim
t→∞

f (t)k = µN
ak−1

k

k−1∏
i=1

N − i
N − 1− ai

. (2)

We then derive our main result about cultural accumulation:

Proposition 1. The expected number

S =
N∑
k=1

fk (3)

of different cultural traits in the population at equilibrium is
approximately

S̃ :=
µN
a
ln

1
1− a

+
µ

1− a
.

For any fixed 0 ≤ a < 1 the relative error (S − S̃)/S tends to zero as
N → ∞, and for any fixed N ≥ 1 the relative error tends to zero as
a→ 1.
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Fig. 1. The accumulation timeline for different values of a: 0.90, 0.94, 0.98 and 0.99;
population size N = 100 and innovation rate µ = 0.1.

The factor µN can be interpreted as the expected number of
innovations made in one generation. Thus, it follows that the
expected lifetime T of a cultural trait at equilibrium is

T =
S
µN
≈
1
a
ln

1
1− a

+
µ

1− a
.

3. Results and examples

The mathematical results of the previous section allow us
to answer a number of questions about cultural accumulation
given the assumptions made in our model. The rationale is, of
course, that if ourmodel captures the important aspects of cultural
accumulation in the real world, then the results of our analysis can
guide empirical studies and make predictions about what will be
found.
First, we investigate how much time the accumulation process

needs to reach close to equilibrium levels. We find that unless
the social learning efficiency is very close to perfect, equilibrium
will be reached fairly quickly. Then, assuming that we will usually
find the world at states close to equilibrium, we study how the
equilibrium amount of culture will depend on the exogenous
parameters as well as how large proportion of the accumulated
culture will be carried by an average individual. These entities are
all empirically observable and measurable, at least in principle.
Finally, we will also study some theoretical aspects of the

model: We will compare its results to the previous macroscopic
model of cultural accumulation, and we will show how our model
can be used also to study mutually exclusive traits.

3.1. How long does accumulation go on?

Assuming that social learning is not perfect (i.e., a < 1) the
amount of culture in the populationwill always proceed to a single
equilibrium. Let xt :=

∑N
k=1 f

(t)
k be the number of cultural traits at

timestep t . We do not have a closed expression for xt , but using
Eq. (1) we can compute xt for any given values of the parameters
N , µ and a. For a few different values of a, Fig. 1 illustrates how
xt grows with t—in other words, we see how the accumulation of
cultural traits depends on time and on social learning efficiency.
It is clear from the figure that the amount of culture changes

fast in the beginning when the amount of culture is still far from
equilibrium, and slowwhen it is closer to equilibrium. In fact, from
Eq. (16) in the Appendix, we know that the relative deviation from
the equilibrium value will decrease with time approximately as
e−(1−a)t/N , so that xt will behave approximately as (1−e−(1−a)t/N)S.
Thus, the equilibrium is x∞ = S and the number of timesteps
Fig. 2. The expected amount S of culture sustained at equilibrium as a function of
population size N . The solid curve shows the exact value (given by Eq. (3)) and the
dashed curve shows the approximation given by Proposition 1. Here, a = 0.9 and
µ = 0.1.

Fig. 3. The expected amount S of culture sustained at equilibrium as a function of
social learning efficiency a. The solid curve shows the exact value (Eq. (3)) and the
dashed curve shows the approximation given by Proposition 1. Here, N = 100 and
µ = 0.1.

needed to reach close to this equilibrium is of the order ofN/(1−a).
Since one individual is replaced at each timestep, we need N steps
to replace asmany individuals as in one generation. Therefore, ifwe
measure the time needed to approach equilibrium in generations,
it is of the order of 1/(1− a).

3.2. Analysis of how the equilibrium amount of culture depends on the
model parameters

As mentioned, assuming a < 1, the accumulation process will
eventually reach an equilibriumwith respect to the total amount of
culture in the population. This equilibrium amount is proportional
to the innovation rate µ, and, according to Proposition 1, grows
approximately linearly with the population size N; see Fig. 2.
The dependency on the social learning efficiency, a, is positive

but non-linear. The amount of culture remains very low until a is
close to 1, and then it accelerates quickly; see Fig. 3.

3.3. How much culture is carried by each individual?

Even if the population carries a large amount of culture, it is not
necessary that any individual carries anywhere as many cultural



80 P. Strimling et al. / Theoretical Population Biology 76 (2009) 77–83
Fig. 4. Expected number of traits per individual divided by the expected number
of traits in the population. Here, N = 100 and µ = 0.1. The solid curve shows the
exact value R∞/S and the dashed curve shows the approximation R∞/S̃.

traits. To calculate the average amount of culture carried by
individuals, consider how an individual acquires cultural traits in
our model. If the average number of traits per individual in the
last generation is R, then a new individual will on average have
aR+µ traits. In equilibrium these amounts are equal, yielding the
equilibrium amount

R∞ =
µ

1− a
. (4)

Interestingly, the amount of culture per individual does not depend
on the population size.
Now let us determine the proportion of traits in the population

that is carried by an average individual (at equilibrium). Dividing
thenumber of traits per individual, from (4), by thenumber of traits
in the population, from Proposition 1, we obtain

µ

1−a
µN
a ln

1
1−a +

µ

1−a

=
1

1− (1− 1/a)N ln 1
1−a

.

From this expression we see that the proportion is independent
of the innovation rate µ and ranges from 1

N+1 (when a = 0)
to 1 (when a = 1); see Fig. 4. (From the exact expression of
S, Eq. (3), the proportion is evidently 1/N when a = 0, so the
use of S̃ underestimates the proportion a little when N is small.)
Thus, individuals become more similar when a increases. As an
individual carries a higher proportion of the total amount of culture
in the population, shewill also share a higher proportion of culture
with other individuals.

3.4. Comparison between microscopic and macroscopic models of
cultural accumulation

The accumulation of culture can be seen as the outcome of two
opposing processes: invention and loss. An equilibrium is reached
when these rates become equal. Cultural traits are lost due to two
reasons. First, individuals can die without ever acting as ‘‘cultural
parents’’; second, social learning is not perfect (a < 1).
Previousmacroscopicmodels of cultural accumulation (Enquist

and Ghirlanda, 2007; Enquist et al., 2008) combine a constant
innovation rate γ with a loss rate that is a constant proportion
λ of the existing amount of culture. This amounts to a simple
differential equation:
ẋ = −λx+ γ . (5)
However, as illustrated in Fig. 5, the proportion of culture lost

is not constant in our microscopic model. Thus, we have exposed a
weakness in the macroscopic model. The loss rate is not constant
Fig. 5. The proportion of traits that is lost between timesteps. Here, N = 100,
a = 0.98, and µ = 0.1.

in the beginning of the accumulation process. This is due to the
fact that, as the cultural accumulation approaches equilibrium,
trait profiles of different individuals become increasingly alike. In the
beginning, when traits exist only if they were recently invented,
people’s trait profiles will be completely distinct from each other.
As the proportion of cultural traits that is inherited rather than
innovated increases, so does the expected number of traits that any
two individuals share. This will affect the loss rate, because when
people share traits to a larger extent, fewer traits will be lost.

3.5. Mutually exclusive traits and the infinite alleles version of the
Moran model

The same mathematical model can be used also to describe
evolution of mutually exclusive cultural traits. Assume that every
individual is a bearer of atmost one trait. Ifµ ≤ 1−a, we canmake
two assumptions within the model:

• Innovation in phase 3 is dependent on phase 2 such that
innovations can only happen in case social learning failed, and
• at most one innovation is made by the new individual.

The consequence is that no individual will ever carry more
than one trait, and hence the traits can be interpreted as mutually
exclusive variants. All our results are valid also for this situation,
like e.g. Eqs. (1) and (2), and Proposition 1.
In this special case, with µ = 1 − a, our model is almost

equivalent to the infinite alleles version of the Moran model in
mathematical population genetics (cf. Ewens, 2004). The only
difference is that, we have assumed that the death phase precedes
the birth phase, whereas the Moran model has this the other way
around. Indeed, from our analysis it is straightforward to obtain
corresponding results under this alternative assumption. Simply
add one individual to the population size (i.e. replace N by N + 1)
and then perform phase 1, the death of one individual, as described
by Eq. (10):

f death-lastk,N = fk,N+1

(
1−

k
N + 1

)
+
k+ 1
N + 1

fk+1,N+1. (6)

From expression (2), where we replace N by N+ 1, we then obtain
a sum that simplifies to

f death-lastk,N = µN
ak−1

k

k∏
i=1

N + 1− i
N − ai

, (7)

so the difference between the death-first and death-last models is
very slight.
The special case corresponding to the Moran model is when

µ = 1 − a. A classic result for the Moran model (cf. Ewens,
2004) is an exact counterpart of our approximative result in
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Proposition 1: Under the stationary distribution, the expected
number of variants/alleles is exactly

Sdeath-lastµ=1−a =

N∑
k=1

θ

θ + k− 1
,

where θ := N(1−a)/a. For any fixedN one can check in a symbolic
algebra system (like Maple) that for the special case of µ = 1 − a
the identity
N∑
k=1

µN
ak−1

k

k∏
i=1

N + 1− i
N − ai

=

N∑
k=1

θ

θ + k− 1

holds (as it must do, by combination of our analysis and the
classic result). We can now use it to derive an exact expression
for Sdeath-last also in the general case when we do not have
the constraint on µ. First observe that in the above identity, µ
only appears as a factor in the left-hand side; this means that
multiplication by (1−a)/µhas the same effect as settingµ = 1−a.
Consequently, we obtain the following general identity:

Sdeath-last =
µ

1− a

N∑
k=1

θ

θ + k− 1
= Nµ

N∑
k=1

1
N − a(N + 1− k)

,

(8)
where the last equality follows from the definition of θ .
For most practical purposes, it is of course preferable to use the

approximation in Proposition 1, which holds equally well for the
death-last version.

4. Cultural non-neutrality

By assumption, each cultural element is inherited independe-
ntly of other traits in our model. Thus if cultural traits are different
in how easy they are to invent or learn, we can track the different
categories of traits independently of each other. As a straightfor-
ward example, let us assume a distinction between two categories
of elements: functional and nonfunctional. A proportion q of all in-
novations is functional, and they are socially learnt with efficiency
a. Thanks to a ‘‘filter’’ (a tendency to prefer functional culture), non-
functional elements are socially transmitted with lower efficiency,
say φa where φ is the proportion of nonfunctional elements that
passes the filter.
From Proposition 1, we can now set up expressions for the

amounts of functional and nonfunctional culture at equilibrium,
respectively:

qµ
(
N
a
ln

1
1− a

+
1
1− a

)
and

(1− q)µ
(
N
φa
ln

1
1− φa

+
1

1− φa

)
.

It follows that the proportion of functional elements at equilibrium
does not depend on the innovation rate µ. However, the expres-
sions show that the relative effect of the filter on the proportion
of functional culture will depend on all other parameters, includ-
ing the population size. For instance, take social learning efficiency
a = 0.9, filter φ = 0.1, and proportion of functional innovations
q = 0.1. Then the proportion of functional culture in equilibrium is
approximately 0.21 for large populations. (So the filter has slightly
more than doubled the share of functional culture compared to
its share of innovations.) The effect of the filter is somewhat even
greater when the population is small; e.g., for N = 10 the propor-
tion of functional culture is approximately 0.25.

5. Discussion

In this paper we have demonstrated that it is possible to
create an analytically tractable individual-based model of cultural
accumulation. The key is the possibility to keep track of the
Table 1
Model variables and their influence on accumulation.

Social learning
efficiency (a)

Population
size (N)

Innovation
rate (µ)

Time to equilibrium (in
generations)

+

Culture at equilibrium + + +

Lifetime of traits (in
generations)

+ −

Culture per individual at
equilibrium

+ +

Proportion of all culture per
individual

+ −

popularity distribution, which is our fundamental object of
analysis. How the different variables influence accumulation are
summarized in Table 1.
At this point, themodel relies on three fundamental simplifying

assumptions, each of which deserves to be discussed:
First, we assume that culture is transmitted in a single learning

event per individual, which is a very common assumption in
cultural evolution models. Extending the model to investigate the
robustness of the results with respect to the number of learning
events will be an important next step.
Second, our model is purely cultural, i.e., it accounts for

no interaction with biological reproduction. As we argued in the
introduction, it seems highly plausible that the accumulation
of culture can play an important role for ecological success.
Our model can potentially be used as a stepping stone for the
theoretical study of such issues.
Third, we assume that cultural elements are independent of

each other, such that having one does not increase or decrease
the probability of learning another. It is evident, though, that
various forms of dependence constitute a salient feature of many
collections of cultural elements. Incorporating dependency in the
model to analyze its impact on accumulation is an important
direction of future research.
We will now discuss how this model can be used to

inform empirical studies of cultural accumulation. There seem
to be several promising areas of empirical study, such as the
accumulation of bird song elements that we discussed in the
introduction. Other examples of possibilities include collections of
culturally transmitted behaviors in primates, and the number of
food dishes in use in human populations. The models make the
following predictions.
To begin with, according to our results accumulation will reach

equilibrium after a moderate number of generations; so we will
typically expect to observe equilibrium levels.
About these equilibrium levels, our results offer two quite

surprising predictions. One is that population structure will not be
important for the total amount of culture in a population; according
to our main result the equilibrium amount of culture is basically
proportional to population size, which means that two isolated
halves of a populationwill together carry asmuch culture as if they
were one large interconnected population. The other surprising
prediction is that the cultural accumulationwithin individualswill be
independent of population size. In other words, we will expect, say,
the same number of song elements carried by individual birds in
both larger and smaller populations. (Of course, both these results
rely on populations not being too small, for our main result to
apply.)
Finally, from an empirical study that covers a not too small

sample of the population one can, at least in theory, obtain a good
estimate of the popularity distribution. From this distribution it is
possible to use our analysis to indirectly estimate the values of the
innovation rateµ and the social learning efficiency a. For instance,
we have seen that shared culture requires efficient social learning,
so to the extent that culture is shared within the population we
will obtain a large value of a compared to µ.
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Appendix. Mathematical treatment

Let pop(v) denote the current popularity of a trait v.

A.1. The popularity distribution development over time

Our first task is to derive f(t+1) from f(t). Let us perform
phase 1, i.e. we remove one random individual from the
population. For each trait v, the leaving individual has it with
probability pop(v)/N . Thus, the expected number Ephase 1k←k+1 of traits
of popularity k+ 1 that lose a supporter during phase 1 is

Ephase 1k←k+1 = (k+ 1)f
(t)
k+1/N. (9)

Next, we compute the expected number f phase 1k of traits of
popularity k after phase 1:

f phase 1k = f (t)k + E
phase 1
k←k+1 − E

phase 1
k−1←k = f

(t)
k

(
1−

k
N

)
+
k+ 1
N
f (t)k+1.

(10)
During phase 2, for each trait v, the new individual obtains it

with probability a pop(v)/(N − 1). Thus, the expected number
Ephase 2k→k+1 of traits that have popularity k after phase 1 and popularity
k+ 1 after phase 2 is

Ephase 2k→k+1 = akf
phase 1
k /(N − 1). (11)

Finally, by definition, during phase 3 the expected number of
new traits created is µ. Nothing else is affected; so we let

Ephase 3k→k+1 =

{
µ if k = 0,
0 if k ≥ 1. (12)

For k = 1, . . . ,N we have

f (t+1)k = f (t)k + E
phase 1
k←k+1 − E

phase 1
k−1←k + E

phase 2
k−1→k − E

phase 2
k→k+1 + E

phase 3
k−1→k

= Ak,k−1f
(t)
k−1 + Ak,kf

(t)
k + Ak,k+1f

(t)
k+1 + E

phase 3
k−1→k, (13)

where

Ak,k−1 =
a(k− 1)(N − k+ 1)

N(N − 1)
,

Ak,k = 1−
k
N
−
ak(N − 2k+ 1)
N(N − 1)

,

Ak,k+1 =
(N − 1− ak)(k+ 1)

N(N − 1)
.

By letting A be an N-by-N tridiagonal matrix whose entries are
given by the equations above, we can write (13) as
f(t+1) = Af(t) + (µ, 0, 0, . . . , 0)T .

(Note that f (t)N+1 = A1,0 = 0.) If f
(0)
= 0, we obtain

f(t) =
(
I+ A+ A2 + · · · + At−1

)
(µ, 0, 0, . . . , 0)T . (14)

A.2. The unique equilibrium

The following proposition guarantees that the series I + A +
A2 + · · · converges so that we reach an equilibrium, which is then
given by
f := lim

t→∞
f(t) = (I − A)−1(µ, 0, 0, . . . , 0)T .
Proposition 2. The eigenvalues of A are 1 > λ1 > · · · > λN = 0,
where

λm =
(
1−

m
N

)(
1+

am
N − 1

)
.

An (right) eigenvector x = (x1, . . . , xN)T with an eigenvalue λ1 is
given by

xk = ak−1
k−1∏
i=1

N − i
N − 1− ai

.

Proof. Fix m. We will show that to the eigenvalue λm defined
above, there corresponds a left eigenvector y = (y1, . . . , yN) to A
of the form yk = c1k+ c2k2+ · · · + cmkm, where the coefficients ci
are independent of k. To this end, we have to check that y satisfies
the relations

Ak−1,kyk−1 + Ak,kyk + Ak+1,kyk+1 = λmyk

for k = 1, . . . ,N , where we have put y0 = AN+1,N = 0 for
convenience. This can be written as

P(k) :=
(
(N − 1+ a)k− ak2

)
yk−1

+
(
N(N − 1)− (N −m)(N − 1+ am)

− (N − 1+ aN + a)k+ 2ak2
)
yk +

(
aNk− ak2

)
yk+1 = 0

for k = 1, . . . ,N . The left-hand side P(k) is a polynomial in k, and
we will try to choose c1, . . . , cm so that the coefficients [kj]P(k)
all vanish. We have [kj]P(k) = 0 for all j > m + 2 and a simple
computation reveals that [km+2]P(k) = [km+1]P(k) = [km]P(k) =
[k0]P(k) = 0 for any values of ci. What remains is a homogeneous
linear equation systemwithm−1 equations andm unknowns, and
choosing c1, . . . , cm as a non-trivial solution to this system makes
y a left eigenvector to Awith an eigenvalue λm.
To see that x = (x1, . . . , xN)T is an (right) eigenvector to Awith

an eigenvalue λ1 = 1− 1−a
N , one only has to check the relations

Ak,k−1xk−1 + Ak,kxk + Ak,k+1xk+1 = λ1xk

for k = 1, . . . ,N , where we have put xN+1 = A1,0 = 0 for
convenience. �

Our next task is to find an explicit formula for the equilibrium
f = (f1, . . . , fN)T . At equilibrium we must have

Ephase 1k←k+1 − E
phase 2
k→k+1 − E

phase 3
k→k+1 = 0 (15)

for k = 0, . . . ,N−1. Plug (10) into (11) and then plug (9), (11) and
(12) into (15). This yields the recurrence relationf1 = µNfk+1 =

a(N − k)k
(N − 1− ak)(k+ 1)

fk if k ≥ 1

and Eq. (2) follows.
Finally, we will examine how fast the equilibrium is ap-

proached. Since

f(t) =
(
I+ A+ A2 + · · · + At−1

)
(µ, 0, 0, . . . , 0)T =

(
I− At

)
f,

the relative deviation |f(t)− f|/|f| from equilibrium is O(λt1), where
λ1 is the largest eigenvalue of A. (Here, |f| denotes the standard `2-
norm.) By Proposition 2, we have

λt1 =

(
1−

1− a
N

)t
≈ e−(1−a)t/N (16)

if N is large.
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A.3. The number of different cultural traits

We are now ready to prove Proposition 1, themain result about
cultural accumulation in our model.

Proof. Keeping a fixed and letting N tend to infinity, we obtain

lim
N→∞

S/N = lim
N→∞

N∑
k=1

µ
ak−1

k

k−1∏
i=1

N − i
N − 1− ai

= µ

∞∑
k=1

ak−1

k

=
µ

a
ln

1
1− a

= lim
N→∞

S̃/N.

When we keep N fixed and let a tend to 1, the last term in the sum
S =

∑N
k=1 fk dominates:

lim
a→1

(1− a)S = lim
a→1

µN
(1− a)aN−1

N

N−1∏
i=1

N − i
N − 1− ai

= lim
a→1

µ(1− a)
(N − 1)

N−1∏
i=2
(N − i)

(N − 1)(1− a)
N−2∏
i=1
(N − 1− ai)

= lim
a→1

µ

N−2∏
i=1

N − 1− i
N − 1− ai

= µ = lim
a→1

(1− a)S̃. �

A.4. Comparison between cultural accumulationmodels with discrete
and overlapping generations

One of our assumptions is that of overlapping generations. Since
it is common in the cultural evolution literature that the models
assume discrete generations (Cavalli-Sforza and Feldman, 1981;
Boyd and Richerson, 1985; Bentley et al., 2004) we want to test
whether that assumption would change our results essentially.
Intuitively, we do not expect any great difference in behavior
from this slight difference in model specification. However, it
is conceivable that parameter values do not directly translate
between the two models. For instance, since there is no common
time scale between the two models it is not clear that the
innovation rate in one model should correspond to the same rate
in the other model.
In order to compare the models, fix a population size N . Let

f µ,ak denote the expected number of traits of popularity k at
equilibrium for CAM with innovation rate µ and social learning
efficiency a. Similarly, let f̃ µ̃,ãk denote the expected number of traits
of popularity k at equilibrium for amodelwith discrete generations
and with innovation rate µ̃ and social learning efficiency ã.
Computer simulations indicate that given any particular

parameter values for the discrete generations model, we can find a
CAM with approximately the same equilibrium behavior. In other
words, given any µ̃ > 0 and 0 < ã < 1 it seems thatwe are always
able to choose µ and a such that f̃ µ̃,ãk ≈ f µ,ak for all k = 1, . . . ,N .
For instance, if N = 100, ã = 0.98, and µ̃ = 0.1, then we

should choose a = 0.9597 andµ = 0.2040, as shown in Fig. 6. The
Fig. 6. The natural logarithm of f̃ µ̃,ãk (curves) and of f µ,ak (circles). Here, N = 100
and µ̃ = 0.1 everywhere, while the other parameter values vary from the bottom
curve to the top curve like this: ã = 0.90, 0.92, 0.94, 0.96, 0.98, a = 0.8074, 0.8439,
0.8815, 0.9202, 0.9597, and µ = 0.2211, 0.2171, 0.2129, 0.2082, 0.2040.

parameters a and µ are chosen to minimize the square sum
N∑
k=1

(ln f µ,ak − ln f̃
µ̃,ã
k )2.

Though this intimate correspondence between models with
overlapping and discrete generations is intuitively not very
surprising, we have not found a formal proof.
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