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How training and testing histories affect
generalization: a test of simple neural networks
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We show that a simple network model of associative learning can reproduce three findings that arise
from particular training and testing procedures in generalization experiments: the effect of (i)
‘errorless learning’, (ii) extinction testing on peak shift, and (iii) the central tendency effect. These
findings provide a true test of the network model which was developed to account for other
phenomena, and highlight the potential of neural networks to study the phenomena that depend on
sequences of experiences with many stimuli. Our results suggest that at least some such phenomena,
e.g. stimulus range effects, may derive from basic mechanisms of associative memory rather than
from more complex memory processes.
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1. INTRODUCTION
This paper deals with a general issue in the study of
animal behaviour that we call path dependence. The
expression refers to the fact that different histories of

experiences ( paths) may at first seem to produce the
same behavioural effects, yet reveal important

differences when further examined. For instance, two
training procedures may establish the same discrimin-
ation between the two training stimuli, yet produce

different responses to other stimuli, because the two
paths have produced different internal states within

the animal. There are several reasons why path
dependence is an important issue. First, it comprises
many phenomena that can provide stringent tests

for theories of behaviour. Second, path dependence is
at the root of several controversies; for instance,

whether animals encode absolute or relative charac-
teristics of stimuli (Spence 1936; Helson 1964; Thomas
1993; Sarris 2003), whether learning phenomena such

as backward blocking and unovershadowing imply,
in addition to basic associative learning, stimulus–

stimulus associations or changes in stimulus associability
(Wasserman & Berglan 1998; Le Pelley & McLaren

2003; Ghirlanda 2005).
In this paper, we use a simple neural network model

of basic associative learning (Blough 1975; Enquist &

Ghirlanda 2005) to show how path dependence can
arise from fundamental properties of associative

memory. The model has two core components: (i)
distributed representations of stimuli based on the
knowledge of sensory processes and (ii) a simple

learning mechanism that can associate stimulus
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representations with the responses. We consider
examples of path dependence in experiments on
generalization (or ‘stimulus control’). These consist
of a training phase in which animals are trained to
perform a specific response to several stimuli and a test
phase in which responding to a set of stimuli is
recorded. The test stimuli often lie on a ‘stimulus
dimension’ such as light wavelength or object size so
that generalization is often described as a response
gradient over the dimension. In generalization experi-
ments, path dependence appears as differences in the
shape of generalization gradients; different paths
correspond to different training or testing procedures.
We show that the model accounts for the following
phenomena (see §3 for details): lack of peak shift after
‘errorless discrimination learning’, decrease of peak
shift during extinction testing and the shift of
generalization gradients towards the average of the
test stimuli (a kind of range effect).

Although we consider laboratory experiments, it is
hardly necessary to note that path dependence exists in
the wild as well, where paths are the consequence of
environmental events rather than being arranged by
an experimentalist.
2. MODEL
(a) The neural network

Nervous systems can be seen as a flexible structure that
can be programmed to generate almost any behaviour,
e.g. relationships between stimuli and responses.
Concretely, such programming includes both the
formation of the neural network and its pattern of
connectivity and the adjustment of connections
between cells in the network. Neural network models
provide an understanding of how such processes can
ultimately produce the behaviour we see in animals
(Arbib 2003; Enquist & Ghirlanda 2005). Previous
work has shown that the simple neural network
This journal is q 2007 The Royal Society
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Figure 1. Examples of network input patterns used in this
paper. The network input nodes are considered as a one-
dimensional sense organ and each panel depicts the pattern
of activity corresponding to a particular stimulus. (a) Back-
ground stimuli are modelled as causing low activity in all input
nodes (e.g. a dimly illuminated Skinner box). (b) A particular
stimulus, e.g.SC, causes theactivityof some inputnodes to rise
above the background levels; different nodes are affected to
different extents. (c) A distinct stimulus, e.g. SK, produces a
pattern of activity of similar shape, but which peaks at a
different position of the input array. (d ) Variation in stimulus
intensity is modelled following sensory physiology, by keeping
the same pattern of activity but raising or lowering its overall
level. See electronic supplementary material for details.
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models of associative learning can reproduce many
fundamental findings of learning and generalization
(Blough 1975; Enquist & Ghirlanda 2005; Ghirlanda
2005). Here, we use a standard feed-forward network
with an array of input nodes connected directly to one
output node (there are no hidden nodes). Stimuli are
modelled as eliciting graded patterns of activity in the
array of input nodes.We write Si, the activity induced in
input node i by stimulus S (iZ1, ., N). The input
nodes are connected to the output node by weighted
connections, the weight attached to node i being Wi.
The strength or likelihood of responding to S is
assumed to be an increasing function of the weighted
sum rS

rS Z
X

i

WiSi : ð2:1Þ

(b) Learning
Wemodel learning by the so-called d rule (McClelland&
Rumelhart 1985), a simple case of gradient descent
algorithms (Haykin 1999) that was first derived by
Widrow&Hoff (1960) and introduced toanimal learning
theory by Blough (1975), based on previous work by
Rescorla & Wagner (1972). At each stimulus presen-
tation, the algorithm prescribes a change DWi in weight
Wi according to

DWi ZaðlKrSÞSi ; ð2:2Þ

where l is themaximum value responding to S can attain
given the applied reinforcer, and a mainly regulates the
speed of learning (Widrow & Stearns 1985). Equation
(2.2) is capable, through repeated applications, of
establishing a different response to each of many stimuli,
provided the corresponding patterns of activity satisfy
certain requirements (‘linear separability’). We refer to
the literature for technical details and other applications
to behaviour theory (Blough 1975; Widrow & Stearns
1985; McClelland & Rumelhart 1986; Rumelhart &
McClelland 1986; Haykin 1999; Enquist & Ghirlanda
2005). Weights are assumed to start from a value of
zero (drawing weights at random from a distribution
symmetrical around zero would lead to the same
conclusions).
(c) Model stimuli and generalization tests

The results below do not depend on the precise details
of how stimuli are modelled, as long as the following
general properties hold: (i) input node activity is
positive; (ii) each stimulus corresponds to a graded
pattern of activity in input nodes; (iii) physically more
similar stimuli correspond to more similar patterns of
activity; and (iv) higher intensity of stimulation
corresponds to higher input node activity. Figure 1
shows the kind of model stimuli we use in practice.
Dimensions such as sound frequency, light wavelength
or spatial position can be modelled by translating an
activity profile like the one in figure 1b over the input
array of the network. This simple scheme captures the
empirical observation that a stimulus change along
these dimensions causes a change in the pattern of
receptor activity but not in total activity. Conversely,
stimulus intensity dimensions are modelled by increas-
ing or decreasing input node activity without changing
Phil. Trans. R. Soc. B (2007)
which input nodes are stimulated (figure 1d ). We refer
to Ghirlanda & Enquist (2003) and Enquist &
Ghirlanda (2005) for further details. Once stimulus
dimensions have been defined, a generalization test is
modelled simply by presenting the network with some
stimuli from the dimension and recording the corre-
sponding network output.

(d) Network analysis

Neural networks can be analysed through a variety of
tools (Haykin 1999), such as formal mathematics,
computer simulations and visualization techniques that
highlight some aspects of network organization and
functioning. In this paper, we simulate the training
and testing phases of generalization experiments and
analyse the resulting network by plotting the weight
array. The latter will usually contain both positive
and negative weights, and the output to a particular
stimulus will depend on the degree to which the
corresponding pattern of activity overlaps with the
positive and the negative weights. This, as we shall see,
allows us to understand how the network responds to
stimuli based on graphical representations of weight
arrays and stimulus activity patterns.
3. RESULTS
(a) Errorless discrimination learning

The first step in most experimental studies of
generalization is to train animals to discriminate
between several stimuli. The experimenter wishes, for
instance, to have animals respond to a given stimulus,
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Figure 2. ‘Errorless’ discrimination learning. (a) General-
ization gradients from two groups of pigeons trained to solve a
discrimination betweenmonochromatic lights with a standard
procedure (dotted line) or ‘errorless learning’ (see text; data
from Terrace 1964). Only the gradient from the former group
shows a peak shift. (b) A neural network simulation of
generalization after standard (dotted line) versus ‘errorless’
(continuous line) learning yields similar results.
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Figure 3. Network weights developed after simulations of
errorless discrimination training (continuous line) or stand-
ard discrimination training (dotted line). These weights
produce the generalization gradients in figure 2b.
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called SC, and to ignore another one, called SK. This
may be achieved by instrumental conditioning, whereby
responses to SC are ‘reinforced’, e.g. with food, whereas
responses toSK are not (Pearce 1997).Details of training
may vary, but it is most common to first train the desired
response toSC and then to introduceSK.The animalwill
usually respond toSK in the first stages of discrimination
training (especially if SK is similar to SC), but if such
responses are never reinforced, the animal will respond
less and less to SK. In practice, discrimination training is
continued until a criterion is met such as ‘three times
more responding to SC than to SK’ or ‘no responses to
SK in a 10 min period’.

When a generalization test is performed after
discrimination learning, one may find that the stimulus
which elicits most responses is not SC, but a stimulus
that is displaced away from SC so as to be more
different from SK (figure 2a, dotted line). Since its
discovery by Hanson (1959), this phenomenon, called
the ‘peak shift’, has fuelled extensive research to
understand how a stimulus that was never reinforced
(and in many cases, never experienced) could be more
powerful in eliciting a response than a reinforced
stimulus (Mackintosh 1974). It has been known, at
least since the pioneering work of Blough (1975), that
simple network models can reproduce the peak shift
phenomenon. We will briefly review the mechanism
below, referring to Enquist & Ghirlanda (2005) for
further discussion. The dotted line in figure 2b shows a
peak shift obtained from a neural network simulation of
a discrimination experiment. For technical details
regarding this and all other simulations in the paper,
we refer to the electronic supplementary material.

Figure 2a also shows a generalization gradient
without a peak shift (continuous line), although the
same SC and SK have been used in training. The
difference is that training did not follow the standard
procedure outlined above but an alternative one,
‘errorless discrimination learning’, developed by
Herbert Terrace at the beginning of the 1960s. In
errorless discrimination learning, SK is introduced
gradually rather than abruptly. For instance, in the
experiment in figure 2, Terrace (1964) trained a
discrimination between a 580 nm monochromatic
light (SC) and a 540 nm light (SK), beginning with a
very faint 540 nm light whose intensity was pro-
gressively increased until an intensity equal to SC

was reached. The name ‘errorless learning’ derives
from the fact that the animal responds very little to SK

throughout training. Intuitively this happens because,
at any given moment, SK is very similar to previously
unreinforced stimuli (including, at the start of training,
the experimental background), and thus has only a
small probability of eliciting a response. Additionally,
initial SK presentations are so brief that the animal is
effectively prevented from responding.

Terrace’s finding that errorless learning prevents the
peak shift has been replicated a few times, but no
agreement exists as to its causes (Purtle 1973). Our aim
is to explore what insight can be gained by simulating
errorless learning with neural networks. We mimic
Terrace’s procedure by starting with a model SK of low
intensity (low activation of network input nodes) and
progressively increasing its intensity, as shown for
Phil. Trans. R. Soc. B (2007)
instance in figure 1d. The resulting generalization

gradient (continuous line in figure 2b) peaks on SC in

agreement with Terrace’s empirical result. To under-

stand why this happens, we plot in figure 3 the weight

values obtained after both standard and errorless

training. After standard training (dotted line), both

positive and negative weights develop, associated

respectively with parts of the input array most activated

by SC and SK. When peak shift occurs, maximum

response is observed for stimuli that are close to SC,

but more distant from SK than SC itself. Such stimuli

retain most of SC’s ability to excite nodes with positive

weight while activating nodes with negative weights

significantly less, which results in a more favourable

balance between excitation and inhibition. During

errorless learning, on the other hand, the input nodes

most stimulated by SK develop very small negative

weights (continuous line). Thus, the gains of departing

from SK cannot offset the losses caused by departing

from SC. Interestingly, this explanation is consistent

with Terrace’s suggestion that errorless learning results

in little inhibition being associated with SK.



0.0

0.5

1.0

1.5
(a) (b)

−4 −2 0 2 4 6

S+ S–

stimulus position (cm)

re
sp

on
se

s 
re

la
tiv

e 
to

 S
+ S+S–

0.0

0.5

1.0

1.5

17 21 25 29 33
stimulus position

pr
op

or
tio

n 
of

 r
es

po
ns

es

Figure 4. Disappearance of peak shift during generalization
testing in extinction (a) in animal data (from Cheng et al.
1997, experiment III; pigeons were trained to discriminate
two small squares 2 cm apart on a computer screen, and
tested with stimuli varying in horizontal position) and (b) in
the network model. Dotted lines represent the gradient just
after training; continuous lines the gradient after testing. The
empirical gradients are built using, respectively, the first and
last few responses to each stimulus during testing in
extinction (blocks 1 and 4 in Cheng et al. 1997). Simulation
parameters have been set to approximate the empirical post-
discrimination gradient (dotted line in (a)), characterized by
about three times more responding to SC than to SK.
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Figure 5. Weights at the beginning (dotted line) and end
(continuous line) of generalization testing in extinction.
These two sets of weights produce the generalization
gradients in figure 4b.
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The reason why the weights develop as shown in
figure 3 can be understood by imagining what happens
in the initial phases of training. The low intensity SK

used at the start of errorless learning is very similar to
the background stimuli to which response is low (e.g.
the dark response key in Terrace’s experiment). To
ensure that response to such an SK be low, therefore, it
is sufficient to adjust the weights only a little. On the
other hand, at the beginning of standard training, SK is
an intense stimulus not unlike SC and thus produces
‘errors’ in the form of high network output, while the
desired response is a low output. The learning
algorithm must thus decrease response to SK consider-
ably, which is achieved by attaching negative weight to
the input nodes most stimulated by SK.

(b) Disappearance of peak shift in extinction

The outcome of a generalization test can be affected by
different aspects of the testing procedure, e.g. its
duration and what stimuli are used. The reason is, of
course, that animals continue to learn during a test.
Thus test results are not, as one would like, simply the
result of probing the animal, but are partly due to
learning caused by probing itself. The most common
testing paradigm is testing ‘in extinction’, i.e. by
unreinforced presentation of test stimuli. This causes
a generalized decrease in response and can also change
the shape of the generalization gradient. An interesting
finding that we consider here is the reduction of peak
shift during testing in extinction (figure 4a; see also
Purtle 1973).

To model this finding, we teach the network a
discrimination between SC and SK, then run a first
generalization test, which shows a peak shift (figure 4b,
dotted line). We then continue to test mimicking the
extinction procedure, i.e. we apply the d rule after each
stimulus presentation with a low target value (low l

in equation (2.2)). In the generalization gradient
produced after many such presentations, we find a
greatly reduced peak shift. Network weights at the
beginning and end of extinction testing are shown in
figure 5, where it is apparent that extinction testing has
reduced the difference between the positive and the
negative weights which underlies peak shift. Testing in
extinction has also reduced the absolute values of the
weights, which results in a general decrease in network
output that parallels the decrease in response as
observed in the experiments.

(c) Range and frequency effects

Any set of stimuli may be, in principle, used in a
generalization test. It is most common to use a range of
evenly spaced stimuli roughly centred around the
training ones, with the aim of getting an unbiased
picture of generalization (with only partial success, as
seen above). However, different kinds of tests have been
used specifically to study how generalization is affected
by post-training experiences. The most common
manipulations include presenting some test stimuli
more often than others and using only stimuli within a
restricted range (for example, reviewed in Thomas et al.
1992). The changes in generalization gradients brought
about by such procedures may be collectively labelled
as ‘range and frequency effects’ and have generated a
Phil. Trans. R. Soc. B (2007)
considerable debate about the underlying memory

processes (Spence 1936; Helson 1964; Parducci

1965; Thomas 1993; Sarris 2003).

One common finding is that extensive testing causes

a ‘central tendency effect’, whereby the generalization

gradient appears to be shifted towards the middle of the

stimulus range used in the test (figure 6a; reviewed by

Thomas et al. 1992). It is easy to test the network in

these conditions, simply running the tests in extinction

with different ranges of stimuli. The outcome of such

tests is indeed a central tendency effect (figure 6b).
Figure 7 shows how testing with different ranges of

stimuli modifies the weight array: probing with a

particular stimulus range causes a shift in the weight

array towards the middle of the range.

Our results suggest that at least some range and

frequency effects may arise from simple mechanisms of

associative learning, while current thinking often

appeals to more complex memory processes (cf.

‘adaptation level’ theory and ‘frequency-range’ theory;
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Figure 7. Weight arrays for the simulations in figure 6a. The
grey line represents weights just after training, the other lines
show how weights have changed after testing in extinction
with three stimulus ranges. In addition to a general decline
caused by the extinction procedure, we see a shift in the
pattern of weights such that the largest weights move toward
the centre of the probed stimulus range.
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Figure 6. Central tendency effect. (a) Generalization
gradients obtained in extinction with different ranges of test
stimuli, indicated by the lines below the graph in matching
style, after identical training to respond to SC. The gradient
peak appears displaced towards the centre of the test range
(data fromThomas & Jones 1962, asking humans to identify a
525 nm light). (b) Network simulation of the same experi-
ment, showing a similar central tendency effect.
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Helson 1964; Parducci 1965; Thomas et al. 1992;
Sarris 2003). The need for such additional processes is
partly inferred from the belief that range and frequency
effects are virtually absent in non-human animals,
although it is possible to find examples in the animal
literature (reviewed by Thomas 1993; Sarris 2003).
Perhaps, the relative ease with which range and
frequency effects appear in humans may just follow
from the fact that humans learn faster (i.e. the effect of
testing is seen even in relatively short tests).
4. DISCUSSION
In this exploratory study, we have used simple neural
networks to test the hypothesis that path dependence
phenomena arise from basic mechanisms of associative
learning in distributed memory systems. We have
shown that a simple network model of learning can
reproduce three particular findings: the effect of
errorless learning and of extinction testing on peak
Phil. Trans. R. Soc. B (2007)
shift and the central tendency effect. We chose to

consider these findings for several reasons. A first one
is that they provide a true test of neural network
models, which were developed to account for different

phenomena. We stress that we have used, without
modification, a very basic model, essentially Blough’s
(1975)model with the addition that stimulus represent-

ations be built with knowledge of relevant sensory
processes (Ghirlanda & Enquist 1999; Enquist &

Ghirlanda 2005).
A second reason is that the considered phenomena

have been known for many decades, yet their theory is

still unsatisfactory. The effects of errorless learning and
extinction testing have been repeatedly considered in
the peak shift literature (Purtle 1973; Mackintosh

1974), but the theory is limited to verbal arguments
such that the animals may learn ‘from the experience of

being tested’ (Prokasy & Hall 1963, quoted by Purtle
1973). Range and frequency effects have received
considerable attention (Thomas et al. 1992; Thomas

1993; Sarris 2003), but the extent to which they can be
accounted in terms of simple associative learning is still

unknown. The main theoretical difficulty posed by all
these phenomena, and by path dependence in general,
is that they require us to track the cumulative effect of

sequences of experiences with many stimuli. This is
difficult in most models (to put it mildly) and reveals
one crucial advantage of neural networks: the ability to

simulate arbitrary sequences of experiences and to get
predictions about responding to any stimulus that can be
received. Simple neural networks are also amenable, in
some cases, to mathematical analysis, although we have
not pursued this approach here (see Haykin 1999;

Enquist & Ghirlanda 2005).
In conclusion, neural networks provide a very

natural framework to study path dependence and

thus increase our knowledge of how experiences
shape behaviour. The neural network models are

already a promising account for a large body of
behavioural phenomena (Enquist & Ghirlanda 2005)
and including path dependence would contribute to a

unified picture of how nervous systems bring about
behaviour.
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Mahwah, NJ: Erlbaum Press.

Spence, K. 1936 The nature of discrimination learning
in animals. Psychol. Rev. 43, 427–449. (doi:10.1037/
h0056975)

Terrace, H. S. 1964 Wavelength generalization after
discrimination training with and without errors. Science
144, 78–80. (doi:10.1126/science.144.3614.78)

Thomas, D. R. 1993 A model for adaptation-level effects on
stimulus generalization. Psychol. Rev. 100, 658–673.
(doi:10.1037/0033-295X.100.4.658)

Thomas, D. R. & Jones, C. G. 1962 Stimulus generalization
as a function of the frame of reference. J. Exp. Psychol.
Gen. 64, 77–80. (doi:10.1037/h0043304)

Thomas, D. R., Lusky, M. & Morrison, S. 1992 A
comparison of generalization functions and of reference
effects in different training paradigms. Percep. Psychophys.
51, 529–540.

Wasserman, E. A. & Berglan, L. R. 1998 Backward blocking
and recovery from overshadowing in human causal
judgement: the role of within-compound associations.
Q. J. Exp. Psychol. 51B, 121–138.

Widrow, B. & Hoff, M. E. J. 1960 Adaptive switching circuits.
IRE WESCON convention record, vol. 4. New York, NY:
IRE.

Widrow, D. & Stearns, S. D. 1985 Adaptive signal processing.
Englewood Cliffs, NJ: Prentice-Hall.

http://dx.doi.org/doi:10.1006/anbe.2003.2174
http://dx.doi.org/doi:10.1006/anbe.2003.2174
http://dx.doi.org/doi:10.1037/h0042606
http://dx.doi.org/doi:10.1037/0096-3445.114.2.159
http://dx.doi.org/doi:10.1037/0096-3445.114.2.159
http://dx.doi.org/doi:10.1037/h0022602
http://dx.doi.org/doi:10.1037/h0022602
http://dx.doi.org/doi:10.1037/h0049354
http://dx.doi.org/doi:10.1037/h0049354
http://dx.doi.org/doi:10.1037/h0035233
http://dx.doi.org/doi:10.1037/h0056975
http://dx.doi.org/doi:10.1037/h0056975
http://dx.doi.org/doi:10.1126/science.144.3614.78
http://dx.doi.org/doi:10.1037/0033-295X.100.4.658
http://dx.doi.org/doi:10.1037/h0043304

	How training and testing histories affect generalization: a test of simple neural networks
	Introduction
	Model
	The neural network
	Learning
	Model stimuli and generalization tests
	Network analysis

	Results
	Errorless discrimination learning
	Disappearance of peak shift in extinction
	Range and frequency effects

	Discussion
	References


