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Abstract

It is common to find spatially repetitive patterns in animal visual signals. The evolution of such patterns is not well explained by
existing theories of signal evolution. In this paper, we suggest that the evolution of signals with spatial repetition may be due to
specific recognition problems and receiver biases. The logics of our hypotheses are studied in co-evolutionary simulations using
artificial neural networks as models of receivers. These simulations yield repetitive visual signals under the following conditions:
translations and reflections of the signal, partial obstruction of the signal, a fixed feature in the signal, and lateral inhibition in the
receiver. In addition to regular repetitions our simulations sometimes result in other organisations of the signal such as blocky

patterns and gradients.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Spatial repetition is a common property of visual
signals found in nature. Such signals may repeat details
such as coloured stripes, dots or morphological struc-
tures. Signals with spatial repetition occur in most
taxonomic groups that rely on visual communication,
such as insects, slugs, fish, reptiles, birds and mammals
(Cott, 1940 or see e.g. Coborn, 1991 (snakes); Wells and
Clayton, 1993 (slugs); Lieske and Myers, 1994 (fish)).
They also occur in some flowers and fruit. We define a
repetitive pattern as one composed of a reoccurring sub-
pattern, referred to as the generator (see Fig. 1). The
goal of this paper is to assess the importance of a

*Corresponding author. Department of Zoology, University of
Oxford, Oxford OX1 3PS, UK. Tel.: +44-1865-271245.

E-mail address: benjamin.kenward@zoology.oxford.ac.uk
(B. Kenward).

"InterCult, Department of History, Stockholm University, Krif-
triket Hus 7B, 106 91 Stockholm, Sweden.

0022-5193/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/].jtbi.2004.06.008

number of factors for the evolution of spatial repetition
in biological signals.

The evolution of signal form has recently received
considerable attention (e.g. Endler, 1978, 1993; Guilford
and Dawkins, 1991; Andersson, 1994; Bradbury and
Vehrencamp, 1998; Endler and Basolo, 1998; Enquist
and Arak, 1998; Boughman, 2002). Signal properties
such as exaggeration, symmetry and colour have all
been investigated but less focus has been placed on
spatial repetition (but see e.g. Rothschild, 1964;
Guilford, 1990; Guilford and Dawkins, 1991). It is well
established that repetition in time, such as the displaying
of the same signal over and over again, promotes
detection (e.g. Haber, 1965; Haber and Hershenson,
1965; Bradbury and Vehrencamp, 1998). However, this
is not always true for spatial repetition, which can
sometimes in fact have the opposite effect, demonstrated
for example by Cott’s Zebra (Fig. 2) (Cott, 1940, but see
also Windecker, 1939 in Jarvi et al., 1981; Godfrey et al.,
1987; Ruxton, 2002).

Factors influencing signal form can generally be
grouped into two main categories. Firstly, a signal
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Fig. 1. Some example patterns that demonstrate the concept of
repetition. Pattern a is repetitive with a generator of two units. Pattern
b is technically repetitive, but generally referred to as a uniform
pattern. We do not regard these patterns as interesting from the point
of view of repetition. Pattern ¢ has a transition from black to white,
but is not repetitive as it has no repeated generator. Patterns d, e and f
are additional examples of repetitive patterns. The generator of each
repetitive pattern is underlined.

Fig. 2. Effect of repetition on signal detectability (based on Cott,
1940). Viewing this figure from increasing distances, the reader will
notice that the repeated pattern fades into the background sooner than
the other two.

may take part of its form from factors unrelated to
communication. Examples are physical laws and con-
straints deriving from body structure or developmental
programs. For example, with segmented animals such as
caterpillars and earthworms, a signal that is produced at
one segment may also appear at other segments,
resulting in repetition. Even in unsegmented animals,
reaction diffusion processes in development may result
in repeated patterns (Turing, 1952). Also, features such
as eyes which may comprise a part of a signal are limited
in the extent to which their appearance can change, and
this could influence the evolution of the rest of the
signal.

Secondly, a signal’s form will evolve to make it
effective for communication and sometimes also to
avoid detection by “non-intended” receivers (e.g. End-

ler, 1978, 1992; Bradbury and Vehrencamp, 1998).
Several factors relating to communication can influence
signal form. The signal must be detectable, transmitting
effectively through an environment which tends to
distort or attenuate the signal (e.g. Morton, 1975;
Endler, 1987, 1993). The receiver can also influence
signal form. Different receiver responses to variants of a
signal act as selection pressures on signals. These
differences in response may be adaptive (e.g. Zahavi,
1975, 1977; Andersson, 1994; Moller and Swaddle,
1997), or they may be due to non-adaptive receiver bias
and a consequence of sense organs and neural archi-
tecture and neural processing (e.g. Staddon, 1975; Ryan,
1998; Enquist and Arak, 1998). Variation in signal
images comes not only from variation in the population
of signallers but also because one particular individual’s
signal can be perceived in numerous different ways,
depending on conditions such as the distance between
and the relative orientations of the sender and receiver
(Endler, 1978; Enquist and Arak, 1998). Selection is
based on the receiver’s responses to all the different
images of a signal it perceives. An example of how this
can influence signal form is the promotion of symmetry
when a signal must be recognized when projected in
different orientations on the retina (Enquist and Arak,
1994).

We consider here a number of very general commu-
nication related hypotheses for the evolution of repeti-
tion, and investigate their logic using evolutionary
simulations. The factors considered include discrimina-
tion tasks, the effect of obstruction of the signal, various
transformations such as translations and reflections,
lateral inhibition and receiver biases. We use artificial
neural networks as models of receiver mechanisms
(Ghirlanda and Enquist, 1998; Kamo et al., 1998;
Phelps, 2001) in simulations of coevolutionary processes
between senders and receivers. Receiver behaviour is
treated as innate and modified by evolution. In addition
to spatial repetition, we also consider some other
patterns that emerged in our simulations and are also
found in nature, including symmetries, blocky patterns
and gradients.

2. Simulation model
2.1. The neural network model

We use feed-forward neural networks to simulate
signal receivers making decisions based on visual
stimuli. These models are inspired by the parallel
structure of real nervous systems and have been used
successfully to reproduce empirical results from studies
of stimulus control in real animals, including such
effects as generalization, peak-shift (super-normality)
and stimulus intensity effects (Ghirlanda and Enquist,
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1998; Kamo et al., 1998; Phelps, 2001). Because the
models’ purpose is to reproduce behaviour, parameters
are set to reproduce stimulus response results, rather
than to match physiology. The basic idea behind this
approach is therefore to design a model which replicates
empirical results, and then investigate how the model
responds under a variety of simulated conditions.

The stimulus is received in the first layer of the
network, which models a retina. The retinal units then
stimulate the cells in the next layer, known as the hidden
layer, through weighted connections. The hidden layer
cells are connected to a single output cell, whose value is
regarded as the network’s response to the stimulus. It is
the values of the connection weights which determine
the network’s response to a particular stimulus. Our
networks have one hidden layer, and are identical to
those used in a number of other studies (for details see
e.g. Enquist and Arak, 1998). Unless otherwise stated,
we use the following parameters: Networks have either
24 retinal units and 10 hidden layer units, or 12 and 6.
There is one output unit, which can produce a response
between 0 and 1. The signal is composed of 12 units. The
retina and signal are one dimensional, and their units’
values are bounded between 0.01 and 1. In the following
text we refer to values of 1.0 as white, and values of 0.01
as black.

We also examine the effects of using networks that
have inbuilt lateral inhibition (for a review of the
phenomena see e.g. Coren et al.,, 1999). In these
simulations the signal stimulates the input layer of the
network only after having been subject to a lateral
inhibition algorithm. The algorithm reduces the strength
of a signal unit proportionally according to the intensity
of its two neighbouring cells. The strongest possible
perceived intensity comes from a cell receiving intensity
1, with neighbours both receiving 0.01. The lowest
possible perceived intensity comes from a cell receiving
intensity 0.01, with neighbours both receiving 1. The
strength of inhibition is governed by a coefficient a. If S;
is a unit in the image and L; is the corresponding unit
after lateral inhibition, then:

1 Si—Si-1  Si— S
Li:(l—a)Si+a(—+ i i—1 i t+1>.

1
2 4 4 (1)
Meaningful values of a are between 0 and 1. A value of 0
means no lateral inhibition. A value of 1 is so much that
a row of black units and a row of white units are both
perceived as 0.5 strength by the network.

2.2. Stimuli

In most of the simulations the task of the network is
to discriminate a signal (S+), from both a background
(B) and another stimulus (S—). The S+ and S— vary
from simulation to simulation but the background is
always uniformly 0.01 (black) and covers the whole
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Fig. 3. An example pattern. The generator [ occurs 4 times,
meaning 8 out of 12 units are covered by a generator, so the repetition
count is 8. Other generators are also in the pattern, such as [ [}
which only covers 6 units.

retina when it is presented. The S— is a uniform pattern
of value 1 (white), and the same size as the S+. From
each stimulus one or more retinal images are created, by
presenting the stimulus to the retina in different ways
(see below).

To measure repetition, we calculate how much of a
pattern is made up by a generator (remember a
generator is a repeated sub-pattern). If there are several
generators, the one covering most of the pattern is
chosen. The number of units made up by a generator is
referred to as the repetition count. For an example, see
Fig. 3. A perfectly repetitive signal of 12 units will have a
repetition count of 12, as the signal will be composed
only of the generator. Although patterns which are
completely uniform could be regarded as repetitive (with
a uniform generator), we assign these patterns a
repetition count of zero. Most patterns that emerge in
the simulations contained only black and white units.
Therefore, to simplify the identification of generators,
grey units are treated as black or white, depending on
whether they are below or above 0.5.

2.3. Fitness

To behave optimally, the receiver must respond with
an output of 0.9 to each of the images produced by
presentation of the signal S+ on the retina (see below).
Let us write as e; the absolute value of the difference
between the optimal output and the actual output for
image i. As a measure of receiver performance we first
calculate the geometric mean of 1 — ¢;:

fsr =/l =e, (®)
i=1

where n is the number of images produced by the S+.
The geometric mean is used because, as in real life, this
leads to severe fitness consequences for a highly
inappropriate response to even one of the images.
According to Eq. (2) fs, is equal to 1 if the response
to every image is perfect (all ¢; are zero), and decreases
as any of the errors e; increase. Receivers should also
respond with an output of zero to all the images
produced by the stimulus S— and the background B. We
can then calculate f¢_ and f as above. We combine
these three performance measures to obtain receiver
fitness like this:

f =fs+(fsff3)5- (3)
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fs_ and f are raised to the 5th power, meaning the
reactions to the background and S— make a greater
contribution to receiver fitness than the reaction to the
S+, because in nature stimuli to be reacted to
(predators, food items, mates) are typically encountered
less often than stimuli which should be ignored, such as
the background. The precise value of the exponent only
influences the speed of the evolutionary process and not
its outcome (so long as it is greater than 1).

The fitness of the sender is also based on the receiver
responses, and it is also calculated with Eq. (2), with the
difference that the optimal output is 1 rather than 0.9.
This means there is a small amount of conflict between
the two players—the sender wants to elicit the maximum
possible response, but the receiver wants to respond
slightly below maximum. We include a small amount of
conflict because it is biologically realistic, and because in
previous studies we had discovered that simulations with
conflict are less likely to get stuck in a configuration
where the receiver is unable to distinguish the signal
from the negative stimuli. The value of 0.9 is to some
degree arbitrary but chosen as a trade off between the
need to include conflict, and the need to reward
discrimination, i.e. the response to the signal being
maximally different from the response to the back-
ground. Pilot experiments revealed that the model is not
sensitive to small changes in this value.

2.4. Iterative evolution

To train a naive network to respond appropriately to
signals, we use a process known as iterative evolution,
which can evolve a network that solves a discrimination
problem and a signal that efficiently stimulates a
network, in a coevolutionary process. For an example
of previous use of this process, see Enquist and Arak
(1998). Network and signal evolution both work in the
same way—a new individual is produced each genera-
tion by mutating the existing one. Both individuals are
tested and allocated fitnesses according to the rules of
the particular simulation. If the new mutant is more fit,
it is kept and the old individual is discarded. If the
mutant is inferior, it is discarded and a new mutant will
be generated next generation. Most of our simulations
involve coevolution between signal and receiver. The
receiver undergoes the process of mutation, testing, and
possible replacement first. The signal then undergoes the
same process.

Every generation each network connection has a
probability of mutating of 3 divided by the number of
connections, meaning that on average there will be 3
mutations each generation. The changes in connection
weight are taken from a normal distribution with mean
0 and standard deviation 0.05. Every generation each
signal unit has a probability of mutating of 1 divided by
the number of signal units, meaning that on average

there will be 1 mutation each generation. The changes in
unit value are taken from a normal distribution with
mean 0 and standard deviation 0.05. These particular
parameters were chosen because experience showed that
they create a balanced coevolutionary situation in which
neither the sender nor receiver has an advantage of
evolving faster than the other.

2.5. Coevolutionary scenarios

Each coevolutionary simulation was run for 50,000
generations, which was long enough for the signal to
reach a relatively stable form (fitnesses changed by less
than 0.01 in the last 1000 generations in 99% of all
simulations). In some simulations functional signals did
not evolve (indicated by low sender and receiver
fitnesses). We discarded these simulations from further
analysis, because we are only interested in functional
signals. For each parameter set, we ran each simulation
until we had evolved 250 non-excluded signals.

2.6. Statistical analyses

We needed a way to analyse the results of our
simulations to determine if repetitive patterns occurred
at a different frequency than expected by chance. To
determine what would be expected by chance in random
patterns, we generated every possible random pattern
and calculated the frequency distributions of each
repetition count. We also calculated these frequencies
for the signals evolved from each parameter set, and
then compared the observed frequencies with the
expected frequencies using chi-squared tests. This
method also allowed us to determine if non-repetitive
patterns (those with low repetition counts) were evolving
more often than expected by chance.

Several simulations resulted primarily in symmetrical
signals, which by their nature have higher repetition
counts than non-symmetrical ones. To test if these sets
of signals had frequencies of repetition counts which
could not be explained by their symmetry alone, we
compared them with random patterns which were also
symmetrical. To do this, we calculated the proportion of
evolved signals which were perfectly symmetrical, and
biased the distribution of random patterns by removing
non-symmetrical patterns at random until it had the
same proportion of symmetrical patterns as the set of
evolved patterns did. The evolved repetition counts and
random (but biased) repetition counts were then
compared using chi-squared tests as before.

3. Hypotheses and simulations

We now describe our hypotheses, simulations of these
hypotheses, and present and discuss the results. We
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begin with an investigation of the effects of the need to
discriminate signals from the background and other
stimuli. Next, we consider how in nature a signal can be
presented in more than one way, depending on
orientation, distance, etc. This results in different images
which require the same response. The way in which these
images are produced can be described by transforma-
tions of various sorts (e.g. Stewart and Golubitsky,
1992). The transformations we consider are translation
and reflection. We then investigate the effect of partially
obstructing the signal. Next, we investigate some effects
of pre-existing structure of both receiver and signaller—
in the case of the signaller the existing structure is a fixed
feature such as an eye; for the receiver the structure is
the lateral inhibition effect common to most visual
systems. Finally, we investigate whether repetition can
be a superstimulus.

3.1. Hypothesis 1—need for signal uniqueness

One reason for the evolution of a non-uniform
repetitive pattern could be the need for distinctiveness
from already existing uniform patterns. Hurd et al.
(1995, Fig. 3) showed that signals which must be
distinguished from each other will evolve to be as
different as possible. Consider, for example, two fixed
signals, one of which is entirely black, and one of which
is entirely white. A third signal, which evolves to be as
different as possible, will often evolve to be black and

Table 1
Typical signals obtained from simulations 1 and 2

white, rather than grey. We suggest that because this
need to be unique can produce signals with patches of
different colour, this can lead to repetition.

3.1.1. Simulation method

We use the standard parameters of a signal size 12,
retina size 12, a black background, a fixed white S—, and
an S+ (the signal) which coevolves with the receiver
network.

3.1.2. Results and discussion

Table 1 shows a few signals which result from this
simulation. It can be seen that black and white units
alternate, which can create somewhat repetitive looking
patterns. However, the distribution of repetition counts
obtained is not significantly different than expected by
chance in random black and white patterns (2 = 6.66,
NS). With 12 signal units about 2% of patterns will be
perfectly repetitive if black and white units are randomly
assigned to the pattern.

3.2. Hypothesis 2—translating the signal across the
retina

Objects do not always project the same unvarying
image on the retina. An object will project in different
positions depending on the relative positions of the
object and observer. Even in animals which direct the
central part of the retina (the fovea) towards objects of

Effect simulated Description of

patterns obtained

Example of patterns

Occurrence
(% of runs)

Repetition count

1—Pressure for uniqueness Random black and white

Varies randomly 100

Blocky

ok

2—Translation Almost perfectly repetitive

Perfectly repetitive

H I N E
BN S B ©
B .
T —
TEHE N NN
EEE R
EE BN B .
EEEEEN
__BEN _ BBB

12 7.2

N is 250 for each simulation.
“Indicates a significantly high occurrence of p<0.05.
“Indicates p<0.001. For details of statistics see text.
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interest, a signal image is unlikely to be projected so that
each photoreceptor always receives exactly the same
input as with a previous image. With a repetitive
pattern, any small part of the retina which is exposed
to a portion of the signal will be stimulated in a similar
way, regardless of the position of the signal. This is
known as invariance of the signal. This may favour the
evolution of repetitive patterns because they are effective
at stimulating the receiver regardless of the position of
the signal.

3.2.1. Simulation method

We increase the retina size from 12 to 24, and present
the signal in all possible positions on the retina to create
the signal images, resulting in 12 different images. The
12 units of each signal image not comprised of the signal
itself are set to the same value as the black background.
Twelve white S— images are created in the same way.
We refer to this treatment as translating the signal
across the retina. Note that in this simulation, and in all
other coevolutionary simulations, the S— and back-
ground are always present, meaning there is always a
pressure to be unique.

3.2.2. Results and discussion

The resulting signals are again mainly black and
white, with very few grey units (see Table 1). Some of the
signals are random patterns, as in the previous simula-
tion. But a large number seem to have identifiable
structure. These structured signals fall into two cate-
gories. The first comprises signals organized into two or
three areas of black and white, which we call ‘blocky’.
These signals have a repetition count of zero, which
occurs significantly more often than expected by chance
(2 = 726.65, p<0.001). They can be discriminated by
the receiver from the S— because the white blocks are
smaller, and because the signals sometimes contain more
than one white block.

The second category comprises repetitive signals (see
Table 1). Perfectly repetitive signals (repetition count 12)
appear significantly often (y3 = 40.99, p<0.001), as do
nearly perfectly repetitive signals (repetition count 10)
(3 =533, p<0.05). We believe the cause of this
repetition could be what we call ‘self-mimicry’ within
the signal. Imagine that there is a sub-pattern within the
signal which is more effective than any other sub-
patterns at stimulating certain parts of the retina. The
signal will become more effective if other regions of the
signal evolve to ‘mimic’ this efficient sub-pattern. Due to
response biases, there may be possible sub-patterns
which are even more efficient, but these are likely to be
similar to the currently existing best sub-pattern. As this
happens, the receiver will adapt to better recognize the
particularly efficient sub-pattern. These two processes
will reinforce each other in co-evolution, meaning that a
particular sub-pattern can become repeated throughout

the signal. If during evolution a new sub-pattern arises
which is even more efficient than the current most
efficient one, then that pattern will then be mimicked
instead.

3.2.3. Analysis of sensitivity of the model to the
properties of the S—

We ran an additional simulation identical to the one
just described, but with an additional S— composed of
random units from a uniform distribution. Visual
inspection of the signals obtained showed there was
little or no difference from simulation 2, and the
distribution of repetition counts obtained was not
different (y2 = 4.607, NS).

3.3. Hypothesis 3—reflection of the signal

When signal images are created on a retina, as well as
varying in position, they can also vary in orientation.
For example, a fish might swim past from right to left,
or left to right, creating images which are reflections of
each other. Repetitive signals can be invariant when
reflected (symmetrical), so reflection may favour the
evolution of repetitive patterns.

3.3.1. Simulation method

There are two variants of reflection used. The first
reflection simulation (3a) is the same as simulation 1
(need for uniqueness), but there are two images of the
signal, the second created by reflecting the first. The
second reflection simulation (3b) is the same as
simulation 2 (translating the signal) but combines
reflection with the translation, meaning there are 24
images, 12 of them reflected versions.

3.3.2. Results and discussion

Simulation 3a results in signals which are all
symmetrical, i.e. the signal and its mirror image are
identical, (see Table 2). We explain this as follows.
Whenever a modification in the signal appears (because
of the pressure to be unique) it would increase the fitness
of the signal further to incorporate the mirror modifica-
tion on the other half of the signal (see also Enquist and
Arak, 1998, Fig. 2.17). Perfectly repetitive signals and
nearly perfectly repetitive signals appear more often
than expected by chance (37 = 58.23, p<0.001 and
%3 =223.47, p<0.001, respectively). There were also a
higher number of blocky signals than expected by
chance (x7 = 104.99, p<0.001). However, it is possible
that both these effects are due to the inherent properties
of symmetrical signals. We control for this by biasing
the expected by chance distribution to have the same
amount of symmetry as the results we obtained. We then
compare this distribution with the obtained results as
before. There is no significant difference (x; = 11.61,
NS). This shows that the increased numbers of both
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Table 2
Typical signals obtained from simulations 3a and 3b
Effect simulated Description of Example of patterns Repetition Occurrence
patterns obtained count (% of runs)
3a—Reflection and 3b—Reflection Symmetrical, blocky -:‘:‘:‘:‘:I:- 0 3a: 14.8™
with translation
3b: 39.2"
Symmetrical, almost 10 3a: 3047
perfectly repetitive . . .-. . .
3b: 26.4
repetitive . ‘ ‘ ‘ .
3b: 16.0"

N is 250 for each simulation.

“Indicates a significantly high occurrence of p<0.001. For details of statistics see text.

repetitive and blocky signals is indeed the result of the
inherent properties of symmetrical patterns, and nothing
more.

Simulation 3b (translation with reflection), results in
signals which are similar to those obtained from
translation without reflection (simulation 2), with the
difference that the majority are symmetrical (see Table
2). There are some with no obvious structure besides
symmetry, but most have additional structure. Many
more are blocky than expected by chance (37 = 1019.77,
p<0.001). Many are perfectly or nearly perfectly
repetitive (3} = 283.86, p<0.001 and »} =33.59,
2<0.001, respectively). In fact this simulation produces
significantly more perfectly repetitive signals than
translation without reflection (y? = 28.97, p<0.001).
As we saw in the previous reflection simulation,
symmetry alone can produce both of these effects. But
this time, after controlling for symmetry, there are still a
significantly large number of blocky patterns
(3 = 128.92, p<0.001) and perfectly repetitive patterns
(2 = 5.87, p<0.05). It seems reasonable to assume that
these signals are produced by the same mechanisms as
when there is no reflection. The blocky patterns are
distinguishable from the S— because of their smaller
white areas. The repetitive patterns are probably the
result of self-mimicry, enhanced by the symmetry.

3.4. Hypothesis 4—partial obstruction of a signal

A problem facing signal senders is to be recognized
when parts of the signal are obscured. For example, a

snake may need to be recognized although much of it is
covered by vegetation. This need could be responsible
for repetitive patterns, which look similar even when
parts are obscured.

3.4.1. Simulation method

The simulation is run with retina, signal, background
(black) and S— (white) all of 12 units. Versions of the
signal and S— are created by obscuring a number of
units between 0 and 8, in all possible ways, but with the
restriction that the visible part of the stimulus was never
divided into more than one area. The obscured units are
set to the black background colour. Each obscured
version of the stimulus is then translated across the
retina, as before, to create the images. The smallest
amount of signal visible in an image is therefore 4 units.

3.4.2. Results and discussion

Almost all the resulting signals (see Table 3) fall
clearly into one of three categories. Those in the first
category are a uniform grey colour, almost always
between 0.1 and 0.3. As explained earlier, black and
white patterns are more different from uniform black
and uniform white than uniform grey is. However, now
that the receiver is presented with only parts of the
signal, it seems that the grey is effective enough to
evolve, presumably because any part of the grey signal is
recognizably grey. It is not so simple to find a black and
white pattern which is easily recognizable from any part
of it.
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Table 3

Typical signals obtained from simulations 4 and 5

Effect simulated Description of Examples of patterns Repetition Occurrence
patterns obtained count (% of runs)

4—Partial obstruction Uniform grey _ 0 40.0
repetitive

N is 250 for each simulation.

““Indicates a significantly high occurrence of p<0.001. Significances cannot be calculated for the grey and gradient patterns, because in these
simulation more than one type of pattern arises with repetition count 0. For details of statistics see text.

The next category of patterns, which do not occur so
often, show a gradient across the signal. This gradient is
usually very shallow (varying only 0.05 from one end to
the other) though it can be steep, ranging almost from
black to white. This signal form is probably a viable
solution because any smaller part of it is still a gradient,
distinguishing it from the background and S—. The grey
and the gradient signals both have repetition counts of
zero, because they are not repetitive. The high occur-
rence of zero repetition count is significant
(3 = 4506.57, p<0.001), though perhaps not particu-
larly informative because it covers two different
categories of signal.

The third category is of perfectly repetitive signals.
More perfectly repetitive signals result from obstruction,
than from translation alone (simulation 2) (33 = 15.33,
p<0.001). This could be due to the fact that each small
part of the signal is now subject to the pressure to be
unique from the background and S—. So black and
white must be spread fairly evenly throughout the signal
to ensure that each possible small part contains both
black and white. However, there are numerous possible
signals meeting this criterion which are much less
repetitive than those which evolved. There must, there-
fore, be another force driving the signals towards

repetition. This, we believe, is the self-mimicry force,
enhanced by the obstruction, because when a sub-
pattern arises which is particularly effective at stimulat-
ing the receiver, it is only present in some of the possible
obscured images. There is now a very strong selection
pressure on the signaller to be able to stimulate the
retina with all parts of the signal. The easiest way for
this to occur is if the inferior sub-patterns are replaced
by the effective one, meaning that the retina does not
have to solve the difficult task of recognizing a large
number of different images.

3.5. Hypothesis 5—a fixed feature in part of the signal

A signal might contain within it a fixed feature, which
has a function unrelated to signalling, but is recogniz-
able. For example, an eye on the side of a fish will be
minimally affected by evolutionary pressures on signal
form, despite the fact that the whole shape and colour of
the fish is a signal. The eye must be able to see, so the
range of forms it can take is severely limited. An
evolutionary stable property of a signal might be used
by the receiver for recognition, and the effectiveness of
the signal might therefore be increased if the form of the
eye is mimicked elsewhere in the signal.
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3.5.1. Simulation method

The simulation is identical to translation alone
(simulation 2), with the exception that the rightmost
three units of the signal are locked as [l . The
remaining nine units of the signal are allowed to evolve
as normal.

3.5.2. Results and discussion

The signals produced (see Table 3) are the same as
those resulting from translation alone (simulation 2),
that is, blocky signals and repetitive signals, as well as
some random patterns. The blocky signals in this case
have a repetition count of four, not zero, because of the
fixed feature, and they appear significantly often
(3 = 71.18, p<0.001). More perfectly repetitive pat-
terns are produced in this simulation than in translation
alone (7 = 25.14, p<0.001). This supports the hypoth-
esis that a fixed feature can produce repetition.

3.6. Hypothesis 6—networks with lateral inhibition

An effect which could be important in the evolution
of repetitive patterns is the physiological process of
lateral inhibition. This occurs when retinal cells which
are stimulated inhibit neighbouring retinal cells. The
more a cell is stimulated, and the closer it is to another
cell, the more intensely it will inhibit the other. This
leads to retinal cells near boundaries between light and
dark areas having greater response intensity, because
there are not so many strongly stimulated cells in their
neighbourhood (e.g. Coren et al., 1999). It is suggested
that by enhancing edges, this process makes it easier to
distinguish objects from backgrounds in varying light
conditions (e.g. Bruce et al., 1996). This might also lead
to networks being highly stimulated by a pattern
containing many transitions between light and dark,
such as repetitive patterns. Stripes, therefore, have a
greater apparent maximum intensity than solid patterns.
Guilford (1990) points out that this intensity could be
responsible for the results of Schuler and Hesse (1985),
who discovered that naive chicks (Gallus gallus domes-
ticus) had a greater hesitancy to eat black and yellow
striped prey than green prey.

3.6.1. Simulation method

We modify some of the previously described simula-
tions by using networks which have inbuilt lateral
inhibition (as described in the method section above).
The first lateral inhibition simulation (6a) has the same
parameters as the one used to demonstrate the effect of
uniqueness (simulation 1). The retina, signal, and S— are
all of 12 units. The lateral inhibition coefficient, a, is 0.6.
The second simulation (6b) combines the effects of
lateral inhibition and translation. The parameters are
the same as in simulation 2—the retina is of 24 units,
signal and S— of 12. We also investigate the effect of the

strength of lateral inhibition by using different values of
a of 0.2, 0.4, and 0.6 (Greater values of a give stronger
lateral inhibition).

3.6.2. Results and discussion

Simulation 6a, which has lateral inhibition but no
translation of the signal, does not result in a distribution
of repetition counts significantly different to that
expected by chance (y2 = 9.11, NS). Even strong lateral
inhibition without translation is therefore not enough to
produce repetition (see Table 4). The results of adding
translation to the lateral inhibition in 6b depended on
the value of a. A value of 0.2 produces signals which are
not significantly different from those produced with
translation alone (y2 = 10.39, NS). Values of a of 0.4
and 0.6, however, produce significantly more perfectly
repetitive signals than without lateral inhibition
(3 = 19.40, p<0.001 and 7} = 121.23, p<0.001, respec-
tively). This suggests that the more lateral inhibition
there is in a network, the stronger the selection for
repetitive patterns.

Other signals are also produced. Blocky patterns and
gradients are both present. The blocky patterns are most
common when lateral inhibition is weak (i.e. a is small)
(3 = 66.5, p<0.001). This is consistent with the
hypothesis that stronger lateral inhibition should
produce more transitions between colours. Most of the
gradient patterns are different from the gradients found
in other simulations, because they shift from dark at the
edge to white in the middle and then back to dark again,
rather than being a simple and consistent gradient from
one end to the other. They are most common when
lateral inhibition is strong (y3 = 12.6, p<0.01). The
gradient signals and the white S— are different in the
following way, which presumably allows the receiver to
distinguish them: The gradient signals, though white in
the middle, have no sharp transition between white and
black at the edges because they fade to black. The S—
images, on the other hand, always contain a sharp
transition between the white edge of the signal and the
black background. Due to lateral inhibition, the edges of
the S— images therefore stimulate the receiver much
more intensely than edges of the gradient signal images.
The signal is still distinguishable from the black back-
ground because it does contain white units. This
explanation of the result implies the receiver has evolved
to produce a high output in response to a medium input
and a low output in recent to a high input—to what
extent this is biologically realistic is uncertain.

3.7. Hypothesis 7—receiver bias for an increased number
of components

Observations from experimental psychology (Hanson,
1959; Mackintosh, 1974) and ethology (Tinbergen, 1951;
Hinde, 1970) have taught us that some unfamiliar
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Table 4
Typical signals obtained from simulations 6a and 6b

Effect simulated Description of

Examples of patterns

Repetition count Occurrence (%

patterns obtained of runs)
6a—Lateral inhibition, Random black and I:-:‘:_:-: Varies randomly 100
a=0.6 white
EE B B BN
6b—Lateral inhibition with Blocky _ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 a=02:248
translation
| | N
a=04:11.6
a=0.6: 0.8
Gradient ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 a=02:13.2
B ([T
a=04:22.0
a=0.6:25.6
Almost perfectly .:-:-:-:-: 10 a=02:204"
repetitive
BN BN B
a=04:14.8
a=06:31.6"
Perfectly repetitive .:-:-:-:-I 12 a=02:72"
BB BE BB B )
a=04:144
a=0.6: 252"

N is 250 for each simulation.
“Indicates a significantly high occurrence of p<0.05.

“Indicates p<0.001. Significances cannot be calculated for the blocky and gradient patterns, because in these simulation more than one pattern

arises with repetition count 0. For details of statistics see text.

stimuli can elicit stronger responses than familiar ones.
If a particular pattern were a stimulus to an animal, then
repetition of that pattern could be a superstimulus. For
example, ten Cate and Bateson (1989) showed that male
Japanese quail chicks (Coturnix coturnix japonica) that
had been imprinted on white adults with artificial dots
painted on tended to prefer adults which had even more
dots than the familiar birds. Receiver bias for increased
numbers of signal components could therefore promote
the evolution of more repetitive signals.

3.7.1. Simulation method

We demonstrate a similar result here with two
simulations. We are now simulating a learning situation,
in which the signal does not evolve. Instead, we train the
network to react to an unchanging stimulus, and then
analyse the network’s responses to some unfamiliar
stimuli. In the first model, the retina is of 12 units. There
is an S+ which is one white unit. There are 12 images of
this stimulus, produced by translating it across the

retina. The network’s task is to distinguish the S+ from
the black background by reacting maximally to the
stimulus and not at all to the background. There is no
S— in this simulation, nor is there coevolution—only the
network evolves. Once the network’s fitness has reached
0.5, evolution is stopped and the network is tested to see
how strongly it reacts to a number of novel stimuli with
more than one white unit. The stimuli tested are
repetitive patterns and uniform patterns. In the second
model we add an S— of two white units, like this: [ | |
(we also keep the black background). The S+ in this
model is two white units separated by one black: [ Il .

3.7.2. Results and discussion

In the first model, it was found that the network
reacted more strongly to patterns with more white units
(Fig. 4a). This is because adding more white units
increases the difference between the background and the
stimulus. However, increasing the number of white units
in a uniform stimulus and increasing the number of
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Fig. 4. The responses of a trained network to a number of test stimuli.
(a) The network is trained to react to an S+ of one white unit, and not
to react to a black background. The response to test stimuli increases
with the number of white units, but is not dependent on whether the
units are arranged in repetitive or uniform patterns. (b) This time the
network is trained to react to an S+, but not to a black background or
an S—. The S+ and S— both contain two white units, but in the S+
they are separated by a black unit. The response to test stimuli again
increases with the number of white units, but this time there is also a
preference for repetitive patterns over uniform ones.

white units in a repetitive stimulus has the same effect,
demonstrating that a repetitive pattern is not the only
pattern type that will super-stimulate this receiver. In the
second model after training the bias for repeated white
units becomes stronger than the bias for uniform white
patterns (Fig. 4b). This demonstrates that if a signal
includes a unit which is repeated just once, a bias can
occur for signals which have more repetitions of that
unit (again because they are more different from the
background). The presence of an S— which is two
adjacent white units means the bias for repetitions is
greater than the bias for larger uniform patterns.

4. General discussion
4.1. Summarising the results

Using simulations with artificial neural networks we
have demonstrated the logic of a number of hypotheses
for factors that might be responsible for the evolution of
spatially repetitive signals. All the factors which we
simulated resulted in the increased probability of the

evolution of repetition, although no treatment produced
solely repetitive patterns. We identified the following
factors as relevant for the evolution of repetition:

1. The effect of the need for uniqueness. Due to the
need to discriminate between different stimulations,
response biases appear in the receiver, which can result
in signals taking on unique patterns containing transi-
tions between colours (see also Hurd et al., 1995).
Patterns which contain transitions can by chance be
repetitive. In nature, other forces such as developmental
programs could operate to make transition containing
patterns more likely to be repetitive.

2. The effect of translating the signal. When the signal
is projected onto the retina in different positions,
repetitive patterns evolve. This is probably because
repetitive signals are invariant—that is they appear
similar in different positions.

3. The symmetry effect. Due to the receiver’s need to
recognize both the signal and its mirror image, the
receiver develops a bias for bilateral symmetries. This
increases the amount of repetition because of the
inherently repetitive properties of symmetrical signals.

4. The effect of partial presentation of the signal.
When the image on the retina comprises only part of the
signal, for example because it is obstructed, repetitive
patterns evolve. This is probably because a repetitive
pattern can be identified without needing to see the
whole.

5. The fixed feature effect. If there is a morphological
feature which cannot evolve due to constraints, then the
rest of the signal might mimic that feature, producing
repetition.

6. The lateral inhibition effect. Networks with lateral
inhibition are more strongly stimulated by patterns
containing transitions between colours, and one way for
a pattern to contain many transitions is for it to be
repetitive.

7. The effect of a preference for several signal
components. A network, which is trained to prefer a
stimulus composed of two separate components to a
uniform stimulus, subsequently prefers stimuli with
greater numbers of repeated components to uniform
stimuli. A preference of this type could result in the
evolution from a signal with a few repeated components
to a signal with many repeated components.

We believe that some of the above effects, such as
translation and partial obstruction, may be mediated by
a more proximate evolutionary process which we call
self-mimicry. There will be inherent biases in the receiver
for particular parts of a signal. The signal will therefore
become more efficient if it repeats any particularly
effective subsection. Due to the receiver’s need to
recognize a signal presented in different positions on
the retina, or only partially presented, the receiver will
also benefit by specializing in recognizing any particular
signal part which is repeated.
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These results are consistent with a number of similar
theoretical studies, based on simulations with neural
networks, which demonstrate how preferences appear-
ing as by-products of recognition problems affect the
evolution of signal form (Enquist and Arak, 1994;
Johnstone, 1994; Hurd et al., 1995; Bullock and CIiff,
1997; Enquist and Johnstone, 1997; Enquist and Arak,
1998; Kamo et al., 1998; Phelps, 2001).

4.2. The other common patterns—blocks and gradients

Though we begun this investigation with the intention
of shedding some light on how repetition evolves, we
have also evolved other types of pattern, most notice-
ably patterns with blocks of colour, and patterns with
gradients. These are all patterns which are often seen in
nature, and the fact that they appear in our simulations
lends legitimacy to our models. We have not investi-
gated in detail the reasons why blocky and gradient
patterns evolve, and further studies in this area may be
worthwhile.

4.3. Additional hypotheses for the evolution of repetitive
patterns

Apart from those causes that have been analysed
above there are a number of others that could be
responsible for the evolution of repetitive signals. Of
course, not all repetitive patterns are signals. In fact
repetition may more often serve to conceal than
advertise (e.g. Thayer, 1918; Cott, 1940). Ortolani
(1999) and Ruxton (2002) review a wide range of
possible functions of repetitive patterns in carnivores
and zebra, respectively. It is beyond the scope of this
paper to comprehensively list all hypotheses related to
communication but we state three more below.

Firstly, regular patterns, such as repetitive patterns,
might be efficient since they are sometimes easier to
detect in the natural and often chaotic stimulus
environments—camouflage is often attained by disrupt-
ing regularity (e.g. Thayer, 1918; Cott, 1940). Second, a
sender could exploit the fact that reality and perception
sometimes disagree, referred to as visual illusions (e.g.
Coren et al., 1999). For instance, a two-dimensional
stripy pattern with horizontal bars will look more broad
than the same sized pattern with vertical bars, (although
depending on the density of bars, this effect can
sometimes operate in the opposite direction, see e.g.
Coren and Girgus, 1978). Third, a pattern can be highly
conspicuous at short distance, but at the same time
cryptic at longer distances (e.g. Cott, 1940; Rothschild,
1964; Endler, 1978; Jarvi et al., 1981). Striped patterns
are a good example; at close range they are very
conspicuous, but at long range the stripes blur together
so that, for example, a black and white striped area
appears grey (e.g. Mottram, 1916; Cott, 1940; Endler,

1978; Coren et al., 1999). For example, Windecker
(1939, in Jarvi et al., 1981), showed that yellow and
black striped cinnabar moth larvae (Tyria jacobaea) are
cryptic when seen at distance amongst the flowers of
their host plant (Senecio jacobaea), but are aposematic
when seen close up. Aposematism is probably not the
only situation in which crypsis at long distance and
conspicuousness at short distance is advantageous.
Imagine for instance a courting male that needs to
display to females without attracting predators. Pre-
dators often have to recognize stimuli from a greater
distance than the distance the prey (e.g. courting male)
has to its signal target (e.g. Endler, 1978, p. 334).

4.4. Conclusions

Repetition is an important ingredient in signals which
have often been analysed, such as the peacock’s tail, but
it is an ingredient that has not often been explained.
There are a number of hypotheses for its evolution
relating to different aspects of the communication
process. Introducing a more realistic mechanism into
coevolutionary simulations has given us insights into
these hypotheses which are difficult to obtain using
other tools such as game theory.
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