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A century of generalization
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We review data from both ethology and psychology about generalization, that is how animals respond to
sets of stimuli including familiar and novel stimuli. Our main conclusion is that patterns of general-
ization are largely independent of systematic group (evidence is available for insects, fish, amphibians,
reptiles, birds and mammals, including humans), behavioural context (feeding, drinking, courting, etc.),
sensory modality (light, sound, etc.) and of whether reaction to stimuli is learned or genetically inherited.
These universalities suggest that generalization originates from general properties of nervous systems, and
that evolutionary strategies to cope with novelty and variability in stimulation may be limited. Two
major shapes of the generalization gradient can be identified, corresponding to two types of stimulus
dimensions. When changes in stimulation involve a rearrangement of a constant amount of stimulation
on the sense organs, the generalization gradient peaks close to familiar stimuli, and peak responding is
not much higher than responding to familiar stimuli. Contrary to what is often claimed, such gradients
are better described by Gaussian curves than by exponentials. When the stimulus dimension involves a
variation in the intensity of stimulation, the gradient is often monotonic, and responding to some novel
stimuli is considerably stronger than responding to familiar stimuli. Lastly, when several or many familiar
stimuli are close to each other predictable biases in responding occur, along all studied dimensions. We
do not find differences between biases referred to as peak shift and biases referred to as supernormal
stimulation. We conclude by discussing theoretical issues.

The study of how external stimuli affect behaviour has
been referred to as the theory of stimulus selection in
ethology and stimulus control in experimental psy-
chology, and has played a key role in both disciplines
during the 20th century. A key finding of such research is
generalization: if a behaviour has been established in
response to a stimulus, novel stimuli resembling the first
one will usually elicit the same response. Usually, modi-
fied stimuli are less effective than familiar ones, but
sometimes they are even more potent in evoking the
response. This finding has been referred to as ‘supernor-
mal stimulation’ by ethologists, ‘peak shift’ by psycholo-
gists, and more recently ‘response bias’ (see, respectively,
Tinbergen 1951; Mackintosh 1974; Enquist & Arak 1998).
Interest in theories of generalization seems to have faded
in recent years, although our understanding is still unsat-
isfactory (Mackintosh 1974; Ghirlanda & Enquist 1999).
Behaviour is often ‘explained’ by merely empirical rules
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of generalization or theories that more or less directly
summarize observations (for example by incorporating
observed features of generalization into the theory, Hull
1943; Mackintosh 1974). In this review we aim to organ-
ize existing data in a way useful to develop and test
theories of generalization. We also point out findings that
conflict with existing theories, and we conclude with a
discussion of theoretical issues. Finally, we hope that this
review will be helpful as a guide of what to expect when
reactions to novel stimuli are important, for example in
experimental design.

APPROACHES TO THE STUDY OF
GENERALIZATION

Ethology and Experimental Psychology

Data about generalization come primarily from etho-
logical and psychological studies of behaviour. Within
experimental psychology, animals are typically trained to
perform a response to one stimulus, called the positive
stimulus (§*), and not to a second, negative stimulus

© 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.
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(S7). The S may be absence of §* or a stimulus differing
from S$* in characteristics such as visual size or sound
frequency. More complex arrangements, with several
positive and negative stimuli, have also been used. After
training, the animals’ reactions to a set of test stimuli are
recorded. These are usually chosen from a ‘stimulus
dimension’ obtained by varying a physical variable such
as wavelength of light or intensity of sound. Data can
thus be represented in the form of a response gradient
along the dimension; this is the chief analytical tool of
the psychological tradition, from which key concepts
such as ‘peak shift” and ‘stimulus control’ are defined (e.g.
Terrace 1966). The test stimuli typically include S*. If S~
lies on the test dimension, too, it is customary to speak of
an ‘intradimensional’ discrimination, for example when
light wavelength generalization is studied after a discrimi-
nation between two wavelengths. If S~ cannot be placed
on the test dimension, the term ‘interdimensional’ dis-
crimination is used, for instance if the test dimension is
sound frequency and S~ is silence or white noise. The
same discrimination can be both intra- and inter-
dimensional depending on the test stimuli chosen. We
thus prefer to speak of inter- and intradimensional tests,
rather than discriminations.

Whereas psychologists are almost exclusively based in
the laboratory, ethologists have mainly studied behaviour
in nature. Although animals are seldom trained by the
researcher, discriminations are common in the wild as
well. For example, to incubate their eggs birds must
discriminate between the egg and the nest background; to
pursue females male butterflies must discriminate their
presence from their absence, and so on. The main
research tool in ethology has been the use of dummies
resembling natural stimuli but with added, removed or
modified features. For instance, the egg retrieval behav-
iour of the herring gull, Larus argentatus, has been studied
using dummy eggs of different sizes, colours and shapes
(Baerends 1982).

We can thus summarize both the ethological and the
psychological methods as the recording of animals’ reac-
tions to stimulus sets including novel and familiar
stimuli. In interpreting results from such experiments, it
is important to remember that behaviour is influenced
both by individual experiences and by the evolutionary
history of the species. Even if the stimuli used in the
laboratory have little significance for animals in the wild,
pre-existing responses and predispositions can influence
behaviour. For instance, novel stimuli can elicit fear.
Thus, laboratory experiments only approximate the ideal
situation of an empty memory modified by experience
with only one or two stimuli, even when ‘naive’ individ-
uals are used. The analysis of natural behaviour is even
more complex, both because the animals’ evolutionary
history more directly influences behaviour and because
experimental control over individual experiences is at
most partial.

Analysis of Stimulus Dimensions

In both ethology and comparative psychology, results
of generalization tests are most often analysed in terms of

Table 1. Contribution of rearrangement and intensity of stimulation
along common stimulus dimensions

Contribution of

Stimulus dimension Rearrangement Intensity

Intensity of sound L

Intensity of light

Chemical concentration
(smell, taste)

Object size

Complex sound spectra

Complex light spectra

Obiject shape

Tone frequency

Monochromatic light

Object orientation

Obiject location

i
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L: Large contribution; S: small contribution, or varying contribution
depending on the exact stimuli used; no symbol means negligible
contribution.

objective properties of stimuli. One drawback of this
approach is that it ignores how stimuli are received by
the sense organs. For instance, focusing on wavelength
of light does not explain why ultraviolet light cannot
control behaviour in some animals. But if we consider
photoreceptors, we discover that some animals have
none that react to ultraviolet light. Here we focus on two
aspects of sense organ activation patterns. The first is the
intensity of stimulation, by which term we mean the
total activation of receptors. This is related to physical
intensity but is not identical with it; for instance, a sound
of 100 kHz does not elicit any activation in human ears
regardless of its physical intensity. The second aspect is
how a given amount of stimulation is distributed among
receptors. We refer to stimulus dimensions along which
intensity does not change as ‘rearrangement dimensions’,
since different stimuli along such dimensions correspond
to a different arrangement of the same amount of
stimulation on the sense organs. Table 1 shows how
common stimulus dimensions can be classified according
to this scheme. The rationale for such a classification is
that variation in intensity has significantly different
behavioural effects, compared with rearrangement of
stimulation (see below).

DATA SELECTION

Although experimental paradigms in generalization
research can be summarized succinctly in their main
points, countless variations exist. We have tried to
include as many studies as possible in our analyses, but
we deemed some unsuitable. Our guidelines may be
summarized as follows. First, we included no study with
fewer than three subjects per treatment, except when we
considered the effect of group size. Second, responding
should be probed at a sufficient number of stimulus
locations to make inferences about gradient shape. When
fitting a curve to the data, we required that more than
10 stimulus locations be probed. One exception is the



analysis of response biases, where responding to a single
test stimulus may serve to estimate a bias. Third, we have
not included studies whose outcome was importantly
affected by unusual features of training or testing, apart
from when we discuss the specific effects of such features
(see especially intensity dimensions below). Fourth, we
could not include some studies in quantitative analyses
because they reveal generalization indirectly, for instance
by studying how reproduction or position in a social
hierarchy is affected by signals used in social interactions
(e.g. Burley et al. 1982; Burley 1986; Johnson et al. 1993).
Nevertheless, these are powerful examples of the biologi-
cal significance of generalization. Lastly, we do not
include temporal generalization, owing to our lack of
familiarity with the field and the additional space it
would require.

We turn now to reviewing the available data on gener-
alization, considering rearrangement dimensions first,
then intensity gradients, and lastly dimensions along
which both the amount and the arrangement of stimu-
lation on the sense organs vary. In order not to burden
the text with the description, results and data sources of
statistical tests, we have collected this information in
Appendices 1 and 2. In the following, we refer to tests by
their number in Appendix 1. A short summary concludes
each major section.

REARRANGEMENT DIMENSIONS

Generalization gradients peaking at or near the positive
stimulus are considered the prototypical finding about
generalization (Fig. 1). Such gradients have been found
along diverse stimulus dimensions such as light wave-
length, tone frequency, object orientation and object
location (Table 2). Stimuli along these dimensions are
best described as corresponding to a rearrangement of
stimulation with respect to the $*, without much change
in the total activation of sense organs. For instance, all
positions and orientations of lines or squares in the
(centre of the) visual field give rise to the same amount of
stimulation in the eye. This is also true of tones of the
same physical intensity and not too different frequencies
(e.g. human hearing, Coren et al. 1999). Variation in light
wavelength can be classified as a rearrangement dimen-
sion as well, that is, total receptor activation is approxi-
mately constant over considerable wavelength ranges in
many species.

Gradient Shape

Spence (1937), in his pioneering work on stimulus
control, used parabolic functions to introduce the con-
cept of a generalization gradient. In later work, he also
assumed bell-shaped gradients (Spence 1942). He
acknowledged that these choices were purely illustrative,
lacking at the time reliable data. Hull (1943), based on
Hovland’s (1937) data, incorporated an exponential
function into his theory of behaviour. Nowadays
researchers mostly hold gradients to be either expo-
nential or Gaussian (e.g. Blough 1975; Shepard 1987;
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Staddon & Reid 1990; Cheng et al. 1997). We analysed
223 rearrangement gradients and found that Gaussian
curves account for about 3% more of the variance in
observed data (estimated by r% appendix 2 describes the
fitting procedure). This difference is small, but significant
(Test 1, P<10~ '%). Both Gaussians and exponentials
account for more than 90% of the variance in most cases,
and about 25% of the gradients conform better to the
exponential shape. Figure 2 illustrates these results.

The experiments we surveyed were designed to give an
overall picture of generalization gradients rather than to
decide between two specific hypotheses. The region
around the peak, most important to discriminate expo-
nentials from Gaussians, is often poorly sampled. Better
sampling appears to favour Gaussian fits, as shown in
Fig. 3 relative to light wavelength generalization in the
pigeon, Columba livia (see for instance the data from
Blough 1975 in Fig. 1). Note also that fitting attempts are
evaluated only in the light of sampled values. Strictly, we
cannot say anything about other values. Yet we do not
expect the actual gradient to depart systematically from a
good fit. Inspection of Gaussian and exponential fits (e.g.
Fig. 1) shows that exponential fits often predict a con-
siderably taller gradient than actually observed (an aver-
age of 20% higher, Fig. 4a). Predictions from Gaussian
fits, on the other hand, are distributed around the
observed values (Fig. 4b). This suggests that Gaussian fits
estimate gradient height more accurately. There is instead
no difference between predictions of Gaussian and expo-
nential fits about the location of the peak (Test 3, NS).
Finally, we note that gradients that are clearly neither
exponential nor Gaussian exist (e.g. the bottom gradients
in Fig. 1; Hoffman & Fleshler 1964; Blough 1972).

Gradient Symmetry

Nearly all theories of generalization assume or predict
that gradients obtained from interdimensional tests are
symmetrical around the $* (Spence 1937; Hull 1943;
Blough 1975; Shepard 1987). However, reproducible
asymmetries have been reported. When data from all
subjects taking part in an experiment are published, we
can test whether they are consistently skewed towards
one or the other side of the $* (see Appendix 2 for
details). For instance, individual gradients in Hearst et al.
(1964, pigeon, line orientation, S*=vertical line, S~ =no
line) are skewed on the side of clockwise rotations (Test 4,
P<0.05).

When individual data are not published, we can gather
group averages from different studies conducted under
similar conditions, and look for a systematic across-study
asymmetry. We can thus confirm that the the skewed
gradient reported by Hearst et al. (1964) has been consist-
ently observed in other studies (Test 4, P<10~%);
responses to anticlockwise tilted lines are on average 92%
of responses to clockwise tilted ones (range 76-104%).
Similarly, an analysis of studies of light wavelength
generalization in pigeons reveals that generalization
around S$"=550nm is consistently skewed (Test §,
P<10~°). Wavelengths shorter than 550 nm total an
average of 67% of the responses to longer wavelengths
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Figure 1. Examples of rearrangement generalization gradients, with Gaussian and exponential fits where appropriate. Sources are given above

each graph.

(range 48-94%). Observations of asymmetrical gradients
also exist for humans. For instance, Kalish (1958),
Thomas & Mitchell (1962) and Thomas & Bistey (1964),
reported marked asymmetries in every one of 12 groups
of 20 subjects each generalizing along the dimension of
light wavelength. Some gradients even show strong
response biases, despite resulting from interdimensional
tests (see e.g. the data from Thomas & Bistey 1964 in
Fig. 1). Furthermore, Thomas & Bistey (1964) reported
increasing asymmetry as more of the test dimension was
sampled (symmetrically around the $*), a challenging
result for theories of generalization (analysis of variance
in the original study: F, 95=11.00, P<0.001).

Obviously, gradient symmetry depends on the scale
chosen along a dimension. Symmetry on a linear scale
will be destroyed passing to a logarithmic one, and vice

versa. Considering the sense organs can help us under-
stand why a gradient is symmetrical on a given scale. For
instance, in the case of sound, gradients appear most
symmetrical on a logarithmic frequency scale, in keeping
with physiological evidence that sound frequency must
change exponentially to yield changes in activation pat-
terns of constant magnitude in the ear (Kandel et al.
1991; Coren et al. 1999). For many dimensions de facto
standards about which scale to use have emerged
that agree with these considerations based on sensory
physiology. We return to this issue below.

Response Biases

After training a discrimination between two stimuli
differing along the test dimension (intradimensional



Table 2. Examples of generalization along rearrangement dimensions

Dimension Response bias Species Source
Light spectra
Monochromatic light No data Human Kalish 1958
Yes Pigeon, Columba livia Hanson 1959
Yes Goldfish, Carassius auratus Ames & Yarczower 1965
Nonmonochromatic light* Yes Goldfish Ohinata 1978
Colour of female dummy* Yes Glow-worm, Lampyris noctiluca  Schaller & Schwalb 1961
Yes Glow-worm, Phausis splendidula Schaller & Schwalb 1961
No Butterfly, Argynnis paphia Magnus 1958
Colour of egg dummy* Yes Herring gull, Larus argentatus Baerends 1982
Orientation of
Line Yes Pigeon Bloomfield 1967
Head stripe Yes Fish, Haplochromis burtoni Heiligenberg et al. 1972
Rocket picture Yes Human children Nicholson & Gray 1971
Sound frequency
No data Goldfish Fay 1970
Yes Rat, Rattus r. norvegicus Brennan & Riccio 1972
Yes Human Baron 1973; Galizio 1985
Yes Pigeon Klein & Rilling 1974
Location in space Yes Pigeon Cheng et al. 1997
No data Honeybee, Apis mellifera Cheng 1999, 2000

For laboratory studies, the column ‘Response bias’ refers to intradimensional tests. See the main text for
information about biases in other conditions.
*Nonmonochromatic lights cannot be meaningfully aligned along a single dimension, and intensity effects may be
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caused by different sensitivity of the receptors to different wavelengths of light.
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Figure 2. Comparison of Gaussian and exponential fits with empiri-
cal generalization gradients. Points above (below) the diagonal
represent empirical gradients better fitted by exponential (Gaussian)
curves.

tests), authors have often found response biases (Table 2).
That is, there exist stimuli that elicit stronger responding
than S* (Fig. 5a). These stimuli are, almost invariably,
located further away from S ~. Recall that response biases
can also appear in interdimensional tests (e.g. Kalish
1958; Thomas & Bistey 1964), a finding that has received
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Figure 3. Differences in percentage of variance accounted for
between Gaussian and exponential fits to light wavelength general-
ization data in pigeons, as a function of separation between test
stimuli (see Test 2, Appendix 1, for data sources and statistics).
Similar results are obtained when considering average separation
between test stimuli rather than the most common one. Note that
most studies adopt a sampling step of about 10 nm, where a large
variation is observed.

little attention. Sometimes a ‘negative’ bias is also
observed, that is, lower responding than to S~ to stimuli
that are further away from S*. This effect is apparent
when § elicits a considerable number of responses even
after discrimination training (Fig. Sb; Stevenson 1966;
Wills & Mackintosh 1998). Response biases along rear-
rangement dimensions also occur in nature, as reported
in the ethological literature about ‘supernormal stimuli’
(Tinbergen 1951; Eibl-Eibesfeldt 1975; cf. Table 2 and
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Figure 4. Predictions about gradient height by (a) exponential and
(b) Gaussian fits to rearrangement gradients, compared with the
observed height. Data sources in Test 1, Appendix 1.

Generalization of inherited and learned behaviour,
below).

In field studies it is often difficult to know what
experience an animal has had. Under laboratory con-
ditions, however, there are a few well-established facts
about the effects of previous experience on biases. A
general finding is that both the strength of the bias
(maximum responding relative to responding to $*) and
the distance of the most effective stimulus from $*
increase when the S* and S~ come closer. In Fig. 6 we
show these effects in the pigeon, along the light wave-
length dimension. The pattern is the same in all studies
where the separation between S* and S has been varied.
Examples are Hearst (1968, line-tilt, pigeon), Ohinata
(1978, wavelength, goldfish), Baron (1973, tone fre-
quency, humans) and Cheng et al. (1997, spatial location,
pigeon).

The variation in Fig. 6 reveals that similarity between
test stimuli is not the sole determinant of response biases.
There are ample indications that training and testing
procedures, as well as the characteristics of stimuli used,
are important factors (Purtle 1973; Mackintosh 1974). For
instance, the so-called ‘errorless’ discrimination training,
where the intensity of the § ~ is increased gradually, does
not seem to produce response biases (Terrace 1964, 1966).
An example of how testing can affect generalization is the
finding that biases tend to recede when the test phase is
very long (Crawford et al. 1980; Cheng et al. 1997). This
may be the effect of the subjects learning that the test
stimuli are not reinforced (see also Blough 1975).
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Figure 5. Examples of response biases along rearrangement dimen-
sions. (a) Hanson’s (1959) classical study. Pigeons were trained to
peck a key for food when it was lit with a 550-nm light, but not
when the wavelength was 570 nm. In a subsequent generalization
test the maximum number of responses occurred at the 540-nm
light. (b) A gradient showing response biases both left of S* and
right of $7, from Guttman (1965). He first trained pigeons to peck at
all the wavelengths to be tested, then introduced a discrimination
training by presenting only $* (still reinforced) and S~ (unrein-
forced). The following generalization tests reveal that some stimuli
to the right of S~ are reacted to less than S™.

Conclusions

(1) Generalization gradients along rearrangement
dimensions are described better by Gaussian than by
exponential functions (Test 1, Fig. 4).

(2) When the rearrangement dimension includes one
S§* but no S, the gradient typically peaks at $* (but not
invariably, Fig. 1), and the gradient is typically symmetri-
cal around S*; however, reproducible asymmetries exist,
and may be more common than usually assumed (Tests
4, 5).

(3) When the rearrangement dimension includes both
one S* and one S, responding is biased: gradients
typically peak at a stimulus that is further away from §
than S$* (Fig. 5); and closer S* and S~ produce gradients
whose peak is both higher and further away from S*
(Fig. 6).

INTENSITY DIMENSIONS

It has long been noted that, in contrast to rearrange-
ment dimensions, intensity dimensions yield strongly
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asymmetrical gradients and strong response biases
(Mackintosh 1974; Fig. 7, Table 3). This was once attrib-
uted to an ‘energizing’ effect of intensity on behaviour
(Hull 1949). However, it is not intensity per se that
controls responding, since gradients that are higher at
lower intensities can follow from experiences with a faint
§* and an intense S~ (Fig. 7b; Pierrel & Sherman 1960;
Zielinski & Jakubowska 1977).

The shape of intensity generalization gradients has
been a debated subject. Claims that variations in intensity
produce monotonic gradients (i.e. ever-increasing or ever-
decreasing) have been contrasted with findings of non-
monotonic gradients (Ernst et al. 1971; Thomas & Setzer
1972). It is clear that intensity gradients cannot grow or
fall forever; for instance, intensities that are too high will
harm the sense organs, and those that are too low cannot
be detected. However, important differences between
intensity and nonintensity gradients exist independent of
statements about gradient shape. For instance, in 30 of 38
intensity gradients surveyed, responding beyond S* does
not drop below S§* levels, even when the gradient is not
monotonic (intradimensional rearrangement gradients: 2
of 93, Test 7 (1), P<10~ °). Furthermore, a quantitative
analysis shows that response biases along intensity
dimensions are significantly stronger than along
rearrangement dimensions (Test 8, P<10~ ¢ Fig. 8).
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Figure 7. (a) Intensity generalization in dogs conditioned to salivate
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to the $*. Data from Razran (1949), summarizing over 250 studies
from Pavlov’s laboratory. (b) Intensity generalization in rats follow-
ing training with two noise intensities, S;=78 dB and S,=87 dB. The
gradient is reversed when the weaker stimulus is the positive one
(data from Huff et al. 1975).

Returning to gradient shape, if we consider ‘monotonic’ a
gradient that does not drop past S* (see below), we find
16 out of 38 monotonic intensity gradients, but none in
93 intradimensional rearrangement gradients (Test 7 (2),
P<10~9).

Theories of generalization must thus explain a number
of differences between intensity and rearrangement
generalization. The only models that so far have met with
some success (reviewed by Ghirlanda 2002) predict
monotonic intensity gradients ‘under ideal conditions’
(that is, in idealized generalization experiments probing a
memory modified by experiences with only two stimuli),
and may be able to explain nonmonotonic intensity
gradients by appealing to determinants of gradient shape
other than stimulus dimension (S. Ghirlanda, unpub-
lished data). In the following we discuss three such
determinants.

First, sampling errors lead to underestimates of the
number of monotonic intensity gradients. An inaccurate
estimate of responding at a single point can transform a
monotonic curve into a nonmonotonic one, but it is less
likely that the reverse occurs. The above definition of
‘monotonicity’, considering only the S* and stimuli
further away from S —, reduces but does not eliminate the
effects of sampling. Indeed, monotonicity of intensity

21
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Table 3. Examples of generalization along intensity dimensions

Intensity dimension Monotonicity ~ Response bias Species Source
Sound
Tone Yes Yes Rat, R. norvegicus Pierrel & Sherman 1960
Yes/no* Yes Rat Thomas & Setzer 1972
Yes/no* Yes Guinea pig, Cavia porcellus Thomas & Setzer 1972
Yes Yes Rat Brennan & Riccio 1973
Yes Yes Rabbit, Oryctolagus cuniculus Scavio & Gormezano 1974
Bell Yes Yes Dog, Canis familiaris Razran 1949
Whistle Yes Yes Dog Razran 1949
White noise Yes Yes Rat Huff et al. 1975
Yes Yes Rat Zielinski & Jakubowska 1977
Light
White light Yes Yes Dog Razran 1949
Yes/no* Yes Pigeon, C. livia Ernst et al. 1971
No Yes Pigeon Lawrence 1973
Yes Yes Rat Brown 1942
No data Yes Earthworm, Lumbricus terrestris  Gilpin et al. 1978
Brightness of egg dummy Yes Yes Herring gull, L. argentatus Baerends 1982
Brightness of female dummy Yes Yes Butterfly, Eumenis semele Tinbergen et al. 1942
Yes Yes Glow-worm, P. splendidula Schaller & Schwalb 1961
No No Glow-worm, L. noctiluca Schaller & Schwalb 1961
Chemical concentration
Odour No data Yes Bee, A. mellifera Bhagavan & Smith 1997
Taste No data Yes Rat Tapper & Halpern 1968
*Both monotonic and nonmonotonic gradients were found.
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Figure 8. Distribution of response biases along intensity and
rearrangement dimensions. The strength of bias is measured as the
ratio of observed maximum responding to responding to S*. Note
that strength of bias is underestimated along intensity dimensions,
since responding often does not start decreasing within the probed
stimulus range. Data sources in Test 8, Appendix 1.

gradients increases with better sampling, that is, with
larger experimental groups (Test 9, P<0.01).

Second, a number of studies reporting nonmonotonic
intensity generalization were designed to explore the
effects of very long test sessions (e.g. Newlin et al. 1979;
Thomas et al. 1991, 1992, excluded from the analyses
above; this research is summarized in Thomas 1993).
Under these conditions, gradients can change from
monotonic to peaked during the test (Fig. 9). Such a
shape change appear analogous to the disappearing or
waning of response biases in the course of long test
sessions, along rearrangement dimensions (e.g. Crawford
et al. 1980, Cheng et al. 1997).

60 70~ 80 90+ 100
Sound intensity (dB)

Figure 9. Data on sound intensity generalization in rats (Pierrel &
Sherman 1960), collected over 6 days of testing in extinction.
Gradients from test days 1 and 2 are both monotonic (their average
is shown in the figure); gradients from subsequent days are not.

Third, laboratory data are often analysed by taking
into account only experimentally controlled stimuli.
However, responding to both the low and high ends of
intensity continua is likely to be influenced by factors
beyond experimental control. Stimuli of high intensity,
for example very loud sounds or very bright lights, are
often avoided by animals. Similarly, stimuli of very low
intensity (silence, a dark response key) are usually not
reacted to. In addition to such generic reactions, specific
responses may interfere. For instance, Baerends (1982)
reported that lightly coloured egg dummies are preferen-
tially retrieved by herring gulls, Larus argentatus, but this
preference does not extend to white dummies. Studies
with related species have shown that gulls usually remove



Table 4. Examples of generalization along size dimensions
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Response
Size dimension bias Species Source
Circle No data Rat, R. r. norvegicus Grice & Saltz 1950
No data  Pigeon, C. livia Jenkins et al. 1958
No data Toad, Bufo bufo Ewert 1980
Yes Horse, Equus caballus Dougherty & Lewis 1991
Yes Butterfly, E. semele Tinbergen et al. 1942
Yes Human Berlyne 1950
Square No data Toad Ewert 1980
Rectangle No data  Human Rosenbaum 1953
Egg Yes Herring qull, L. argentatus Baerends 1982
Yes Black-headed qgull, L. ridibundus Baerends et al. 1975
Yes Oystercatcher, Haematopus ostralegus ~ Tinbergen 1951
Yes Ringed plover, Charadrius hiaticula Koehler & Zagarus 1937
Tail Yes Widowbird, Euplectes progne Andersson 1982
Yes Swordtail fish, Xiphophorus helleri Basolo 1990; Basolo & Delaney
2001
Food item Yes Newborn chicks, Gallus g. domesticus ~ Gamberale & Sillen-Tullberg 1998;
Gamberale-Stille 2000
Female dummy Yes Butterfly, Argynnis paphia Magnus 1958
Female lantern Yes Glow-worm, P. splendidula Schaller & Schwalb 1961
No Glow-worm, L. noctiluca Schaller & Schwalb 1961

white objects from the nest (a likely antipredatory
defence; Tinbergen et al. 1962; Baerends 1982).

Conclusions

(1) Gradients obtained along intensity dimensions
show larger response biases than rearrangement gradients
(Fig. 8).

(2) Many intensity gradients are monotonic (rather
than peaked) over large ranges of intensity; more specifi-
cally: responding increases with intensity when $* is
more intense than S~ (including when S~ is §* ‘turned
off’, e.g. a dark versus an illuminated key); and respond-
ing decreases with intensity when S is less intense than
S

(3) Observed departures from monotonicity can, at
least in some cases, be ascribed to: errors in sampling the
gradient (Test 9); long test sessions, leading to changes in
gradient shape (Fig. 9); and pre-existing reactions (both
inherited and learned) to very intense stimuli (often
avoided) or very weak ones (often ignored).

VARIATION IN SIZE AND OTHER DIMENSIONS

Along size dimensions, both the amount of stimulation
and its arrangement on the sense organs vary. Consider a
familiar stimulus of a given size. A bigger stimulus will act
on more sensory cells than the familiar one, providing
more stimulation. On the other hand, it will also provide
a different arrangement of stimulation. We can try to
understand size gradients as a trade-off between these two
components. One immediate consequence is that the
gradient may be asymmetrical, higher on the side of

bigger sizes. This is because the intensity and rearrange-
ment components have contrasting effects for bigger
stimuli (stimulating more receptors, but in a different
pattern), but work together in reducing responding to
smaller stimuli (stimulating fewer receptors and in a
different pattern). This prediction is confirmed by avail-
able data (Test 10, P<0.05). The same data suggest that
size gradients are described better by Gaussian than by
exponential curves (Test 11, P=0). Both conclusions
should be viewed as tentative in light of the small
number of studies examined (N=7 and N=8, respect-
ively). Another element in support of a rearrangement/
intensity analysis of size dimensions is that size gradients
show larger response biases than rearrangement gradients
(Test 8, P<0.02). In the small sample collected, biases
towards bigger sizes appear comparable with biases along
intensity dimensions (Test 8, NS).

Table 4 gives examples of response biases along size
dimensions. Similar regularities as those reported above
for rearrangement dimensions seem to apply. For
instance, Weinberg (1973) found a stronger bias when S$*
and S~ were closer in size.

If a simple consideration of the arrangement and inten-
sity of stimulation is helpful in analysing size dimensions,
it is not so for many other dimensions (Table 5). In some
cases, we do not know enough about the sense organs
underlying perception along some dimensions, for
example floor tilt (Lyons et al. 1973) or arm movement
(Hedges 1983; Dickinson & Hedges 1986). In other cases,
for example complex variations in shape (Ferraro &
Grisham 1972; Wasserman et al. 1996), distinguishing
between intensity and nonintensity effects is simply not
sufficient. When we lack information about underlying
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Table 5. Examples of generalization along dimensions that cannot be classified with the rearrangement/intensity

scheme
Response
Dimension bias Species Source
Visual shape
Female dummy Yes Butterfly, A. paphia Magnus 1958
Polygon Yes Pigeon, C. livia Ferraro & Grisham 1972
Egg No Herring gull, L. argentatus Baerends 1982
Visual contrast Yes Herring gull Baerends 1982
Yes Chicks, Gallus g. domesticus ~ Osorio et al. 1999
Length of movement Yes Human Hedges 1983
No data  Human Dickinson & Hedges 1986
Click rate Yes Pigeon Farthing & Hearst 1972
Yes Rat, R. r. norvegicus Weiss & Schindler 1981
Flicker rate Yes Pigeon Sloane 1964
Yes Butterfly, A. paphia Magnus 1958
Floor tilt Yes Pigeon Lyons et al. 1973
Yes Pigeon Riccio et al. 1966
Calls/songs Yes Monkey, Callimico goeldii Masataka 1983
Yes Blackbird, Turdus merula Wolffgramm & Todt 1982
Human faces Yes Human Rhodes 1996; Rhodes &
Zebrowitz 2002
Yes Chickens Ghirlanda et al. 2002
Checkerboard patterns Yes Human Mclaren et al. 1995
Icon sets Yes Human Wills & Mackintosh 1998
Drawings of rotated objects No data  Pigeon Wasserman et al. 1996
‘Aggressiveness’ of verbal stimuli ~ No data Human Buss 1961; 1962
‘Fearfulness’ of snake pictures No data  Human Buss et al. 1968

sensory processes, we can try to infer some characteristics
of such processes by analysing the experimental data in
the light of what we know from other, better studied
dimensions. For example, Dickinson & Hedges (1986) let
blindfolded humans move a sliding handle for a given
distance, and tested them with movements of different
lengths by asking if they matched the training one. Their
results seem to suggest that length of movement is per-
ceived as a rearrangement dimension. Monotonic gradi-
ents have been reported along dimensions that cannot be
readily identified as intensity ones (Ghirlanda & Enquist,
1999); for instance rate of stimulus presentation (Magnus
1958; Weiss & Schindler 1981) or femininity/masculinity
of human faces (Enquist et al. 2002b). The case of changes
in shape is particularly interesting. For instance, Magnus
(1958), studying Argynnis paphia butterflies, found that
certain shapes attract males more than female-shaped
dummies, but also that males respond very little to other
shapes (Fig. 10). Data of this kind can be used to explore
how similarity is perceived across species.

Conclusions

(1) Both peaked and monotonic gradients have been
found along dimensions where both the intensity and the
arrangement of stimulation vary.

(2) Response biases have been found along all
dimensions investigated so far.

(3) Generalization along size dimensions is influenced
by both intensity and rearrangement effects: size gener-
alization gradients are typically peaked; they are better
approximated by Gaussian than by exponential functions
(Test 11); they exhibit larger biases than gradients along
rearrangement dimensions, and comparable to intensity
gradients (Test 8); and when S~ is the absence of S*,
responding is biased towards bigger sizes (Test 10).

FACTORS AFFECTING THE AMOUNT OF
GENERALIZATION

A fundamental question is what regulates the amount of
generalization along a dimension. The width of a peaked
gradient provides a measure of the amount of general-
ization, and one factor related to gradient width is
discriminability. Guttman & Kalish (1956) noted that
generalization is measured by the change in behaviour
arising from a change in stimulation, whereas discrimi-
nability is defined as the change in stimulation necessary
to yield a behavioural change (cf. Lashley & Wade 1946).
They thus suggested that generalization and discrimi-
nability should be inversely related, but because they
lacked reliable data on discriminability they failed to
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Figure 10. Reactions of male Argynnis paphia butterflies to female
models of different shapes (data from Magnus 1958). The effective-
ness of each model is expressed as the proportion of flights towards
it on a total of 135 flights, in an open area where all models were
visible simultaneously. All models had an area of approximately
22 cm? and were of the same colour (orange-red).

observe this relation studying light wavelength general-
ization in the pigeon. Later work has confirmed that
pigeons generalize more in regions of the light spectrum
where discriminability is poorer (reviewed in Honig &
Urcuioli 1981). The same conclusion was reached by
Kalish (1958) in a study of wavelength generalization in
humans. Similarly, Fay (1970) showed that width of
sound frequency generalization gradients in goldfish
increases approximately linearly with the frequency of
the §*, in line with the decreasing discriminability along
this dimension (Hawkins 1981). Furthermore, discrimi-
nability can change differently on the two sides of the §™,
thus affecting gradient symmetry (Blough 1972; Honig &
Urcuioli 1981). We stress that discriminability and gener-
alization are both behavioural measures, and thus one
cannot explain the other. Rather, we should understand
how both emerge from characteristics of nervous systems
such as the response properties of receptors and how
signals from receptors are processed.

A second factor influencing the amount of general-
ization is the experiences an animal had along the test
dimension. Gradients obtained from interdimensional
tests along the same dimension can vary considerably in
width. An analysis of light wavelength generalization in
the pigeon, for instance, shows that the standard devi-
ation of Gaussian fits varies from about 2.5 nm (Blough
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1969) to about 27 nm (Thomas & King 1959), indicating
that choice of stimuli and details of experience have a
large impact on amount of generalization. Adding nega-
tive stimuli along the test dimensions tends to make
gradients narrower. For instance, pigeons generalize less
after discrimination between two wavelengths than after
discrimination between one wavelength and a dark
stimulus (Test 12, P<0.001). This effect has also been
observed in goldfish, along the wavelength dimension
(Ames & Yarczower 1965; Ohinata 1978), and in humans,
along the dimension of sound frequency (Baron 1973).

So far we have mainly discussed generalization after
experiences with only one §* and one S~ . In reality, a
particular external condition, such as presence of food,
produces many different stimuli on the sense organs
(many positive stimuli for feeding behaviour). For
example, food items differ in appearance and a single
food item gives rise to different receptor activations
because of variations in distance, light conditions, orien-
tation and so on. In such situations there is variation
within as well as between the sets of positive and negative
stimuli. Despite the obvious biological importance of
the subject, our knowledge of generalization following
experiences with many stimuli is unsystematic. Relevant
data come from a variety of sources such as studies of
summation, generalization, memory and perceptual con-
stancy (Walsh & Kulikowski 1998). In Fig. 11 we show
some data from studies of generalization. When two or
more positive stimuli are close enough we may observe
stronger reactions to intermediate stimuli (Fig. 11a), a
result found also in studies of summation and stimulus
compounds (Wagner 1971; Weiss 1972; Kehoe 1986) and
in evaluations of the prototype model of memory (Rosch
et al. 1976; Homa et al. 1981; Shanks 1995). When the
positive stimuli are more distant the intermediate ones
may result in less responding (Fig. 11a). This may be the
same as the failure of revealing prototype effects in some
memory studies (Lea & Harrison 1978; Pearce 1987;
Watanabe 1988). A fundamental question, for both
behaviour and evolution, is whether response biases are
found after the same amount of experience with many
stimuli (Enquist & Johnstone 1997; Enquist & Arak 1998).
Flat gradients (Fig. 11c) and small (Fig. 11b) and large
biases (Fig. 11d) have all been reported. The strongest
biases seem to appear along intensity dimensions (Fig.
11d, from Scavio & Gormezano 1974; see also Kessen
1953; Bass 1958; Murray & Kohfeld 1965; Birkimer &
James 1967; Blue et al. 1971).

Conclusions

(1) Gradient width and symmetry can be related to
discriminability along the test dimension: finer dis-
criminability is correlated with narrower gradients; and
when discriminability is different on the two sides of §*
asymmetrical generalization gradients are observed.

(2) Along rearrangement dimensions, discriminations
between stimuli leads to decreased generalization
(narrower gradients).

(3) Along rearrangement dimensions, training on sev-
eral or many equally rewarded S* increases generalization

25



26

ANIMAL BEHAVIOUR, 66, 1

0.2

(a)

0.15

0.1

0.05

\ \ \ &
-10 0 10 20

Deviation from middle wavelength (nm)

o
=

©

Proportion of responses

b
0.05¢

0 \ \ \ \
4 8 12 16

Stimulus number

0.2
(b)
015~

0.1

0.05 =

\ \ \
520 540 560

Wavelength (nm)

580

0.5

0.4

0.2

0.1~

0 \ \ \ \
65 72 79 86

Tone intensity (dB)

Figure 11. Four examples of generalization after experience with many stimuli. ®: Training stimuli; o: test stimuli. Subjects had the same
experience with all training stimuli. (a) Two-stimulus training can yield gradients with both one or two peaks depending on the difference
between stimuli (data from Blough 1969, pigeon, wavelength). (b) Three-stimulus training can produce less responding to the intermediate
stimulus (data from Kalish & Guttman 1959, pigeon, wavelength). (c) In this case no response biases are found after extensive experience with
a set of contiguous stimuli (data from Guttman 1965, pigeon, wavelength). (d) Responding can be stronger to more intense stimuli, even
when all stimuli were followed by the same consequences during training (data from Scavio & Gormezano 1974, rabbit, tone intensity).

(broader gradients): if the S*’s are close to each other,
a flat or almost flat gradient develops over the range
covered by the training stimuli; departing from the S* on
both sides, the gradient falls down (Fig. 11a, b, c¢); the
gradient shows multiple peaks if the distance between
training stimuli is sufficiently increased (Fig. 11a); and
responding to all training stimuli is the same or similar
(small biases, Fig. 11b, c).

(4) Along intensity dimensions, substantial biases in
responding persist even when two or more stimuli are
equally rewarded. The more intense S*’s elicit stronger
reactions (Fig. 11d; Kessen 1953; Bass 1958; Murray &
Kohfeld 1965; Birkimer & James 1967; Blue et al. 1971).

GENERALIZATION OF INHERITED AND LEARNED
BEHAVIOUR

Both genetically inherited and individually learned
responses generalize to novel stimuli (Tables 2-5). Within
ethology, however, there has been a tendency to separate
the study of innate and learned generalization. For
instance, ethologists have often claimed that super-
normality and peak shift are distinct phenomena, at the
same time that similarities have been acknowledged
(Baerends & Krujit 1973; Hogan et al. 1975; Staddon
1975; Dawkins & Guilford 1995). Within psychology, the
question is seldom addressed explicitly; however, defini-

tions of generalization typically make direct reference to
individual learning (Kalish 1969). These attitudes prob-
ably stem from early ideas within the two disciplines:
classical psychologists often ignored innate determinants
of behaviour (Watson 1924), and early ethologists
claimed that inherited and learned behaviour are
governed by different mechanisms (Von Uexkull 1928;
Lorenz 1937).

Although such rigid ideas have been abandoned
(Hogan & Bolhuis 1994; Bolhuis & Hogan 1999), the idea
that inherited and learned behaviour generalize differ-
ently seems to have survived longer (Baerends & Krujit
1973; Dawkins & Guilford 1995). In particular, it has
been claimed that innate behaviour results in ‘open-
ended’ generalization (i.e. monotonic gradients), while
individual learning does not (Baerends & Krujit 1973;
Hogan et al. 1975; Lorenz 1981). The data do not support
this statement. Note first that ethological studies of super-
normality are not always about behaviour that is inde-
pendent of individual learning (e.g. egg retrieval in gulls,
Baerends 1982). Furthermore, some dimensions cannot
by their nature result in open-ended generalization,
regardless of ontogeny of behaviour. For instance, the
response of male Haplochromis burtoni cichlids to the
orientation of the head stripe (Heiligenberg et al. 1972)
can only come back to its original value after the stripe
has turned a full circle.



Pure rearrangement dimensions are rare in ethological
studies, as test stimuli most often vary in complex ways.
One exception is the just cited study by Heiligenberg
et al. (1972), where the supernormal effect of a rotated
head stripe decreases after only a 90° rotation. In other
cases a rearrangement dimension can be defined by vary-
ing only one characteristic of a complex stimulus. For
instance, many of the stimuli in Fig. 10 are rectangles of
different length and constant area. It is clear that the
preferences of A. paphia males along this rearrangement
dimension are not open ended. The case of colour is more
complex. First, different light spectra of the same physical
intensity can elicit different amounts of activation in
receptors (and differences between species exist). Second,
physical intensity is seldom controlled for in ethological
studies. Anyway, ethologists report that dummies of
unnatural colour can be both more and less effective in
eliciting an innate behaviour (Magnus 1958; Schaller &
Schwalb 1961). In some cases the most effective colour is
clearly not at the extremes of the spectrum (L. noctiluca
glow-worms: Schaller & Schwalb 1961; herring gulls:
Baerends 1982) or closely matches the natural colour
(A. paphia butterflies: Magnus 1958).

Open-ended generalization of innate behaviour has
been reported almost exclusively along intensity dimen-
sions, for instance by Tinbergen et al. (1942, brightness of
female butterfly dummy), and Schaller & Schwalb (1961,
brightness of glow-worm female dummy), with a few
exceptions along size dimensions (where strong biases are
expected, see above). For example, Baerends (1982)
showed that oversized eggs are preferred by incubating
gulls up to giant sizes. Magnus (1958) provided mixed
evidence, showing that male A. paphia butterflies prefer
four-fold enlarged female dummies to dummies twice the
normal size when the dummies are stationary, but not
when they imitate flight. Similarly, Schaller & Schwalb
(1961) reported that in glow-worms, P. splendidula males
prefer dummy female lanterns four times bigger than
normal, but L. noctiluca males do not. There are further
reports that the supernormal effect of bigger stimuli often
quickly ceases. One instance is the response of male
P. splendidula and L. noctiluca to circular lights, which
declines for circles several times bigger than the female’s
lantern (Schaller & Schwalb 1961). The same authors
showed that L. noctiluca males prefer a dummy lantern
containing three horizontal segments to one with six
(two is normal). Koehler & Zagarus (1937) found that
ringed plovers, Charadrius hiaticula, retrieve eggs weigh-
ing 17 g, but not those above 35 g (normal eggs weigh
about 11.5 g). In this last case individual learning may
play a role (cf. Baerends 1982). Finally, Ewert (1980) has
shown that both naive and experienced toads, Bufo bufo,
clearly prefer catching objects within a restricted size
range.

Conclusions

We could find no difference between generalization of
genetically inherited and individually learned behaviour,
with respect to either gradient shape or response biases:
the distinction between the effects of intensity and
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rearrangement of stimulation appears valid for both
inherited and learned behaviour; and the claim that
biases in inherited behaviour are open ended (mono-
tonic) whereas biases in learned behaviour are limited is
unsupported.

DISCUSSION

Empirical data gathered in about 100 years of research
establish generalization as a fundamental behavioural
phenomenon, whose basic characteristics appear univer-
sal. Birds and mammals are most studied, but fish, insects,
amphibians and reptiles generalize in the same ways. It
seems to matter little, for generalization, whether a
behaviour has been acquired phylogenetically or through
individual learning, and the nature of sensory con-
tinua is an important determinant of gradient shape.
Furthermore, generalization seems little dependent on
the context in which a given behaviour is used. That is, if
a discrimination between green and red is established,
generalization to other colours will follow independent of
whether the discrimination is about food items or poten-
tial partners (e.g. Ghirlanda et al. 2002), or on whether
behaviour is performed by children to obtain ‘points’ or
by pigeons pecking for food. The generality of the
findings reviewed suggests that generalization arises
from basic and universal characteristics of behaviour
mechanisms (cf. Hogan 1994).

This review has focused on empirical findings, but we
end with some theoretical considerations. A number of
attempts have been made to understand the causes of
generalization (reviewed in Kalish 1969; Mackintosh
1974). Theorizing about mechanisms has considered
properties of stimuli, sense organs and neural processing,
and how these factors interact. Physical similarity
between stimuli is one cause of generalization. Stimuli
may be similar because they share common components,
and generalization may follow because novel stimuli
include components also present in familiar stimuli (e.g.
Thorndike 1911; Guthrie 1930, 1935; Blough 1975;
Rescorla 1976). However, not all stimuli are made up of
‘components’ in this sense (e.g. light and sound spectra).
In general, what is similar and different to an organism
depends also on properties of receptors and the organiz-
ation of sense organs (including early processing of neural
signals within sense organs). These factors determine how
physical similarity translates into similarity of nervous
signals to the brain, and will thus contribute to general-
ization. Receptors and sense organs have often been
ignored, especially in contemporary psychological
models (but not always in early ones, Hull 1943;
Schlosberg & Solomon 1943; Hebb 1949). By considering
them it may be possible to account for both rearrange-
ment generalization and intensity generalization within
the same model, by recognizing that similarity depends
upon which receptors are stimulated and to what degree
(Ghirlanda 2002).

Generalization is also modulated centrally in the
nervous system. Suggestion about how this occurs vary in
detail, but the core idea is that processing of stimuli that
are distinctly different can rely, at least to some extent, on
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the same nerve cells and connections (Pavlov 1927; Hebb
1949; Horne 1965; Thompson 1965; Baerends & Krujit
1973; Blough 1975; Lorenz 1981). Distinct stimuli may
thus come to elicit similar responses. Generalization of
this kind is strongly dependent on experience (includ-
ing the species’ experience, coded in the genes). Often
generalization is substantial along dimensions with
which the organism has little experience (Peterson 1962;
Rubel & Rosenthal 1975; Kerr et al. 1979). Along
familiar dimensions organisms generalize less: latent
learning, perceptual learning and discriminations
between similar stimuli all decrease generalization
(Mackintosh et al. 1991; Bennett et al. 1994; see also
above). Discrimination learning, in particular, can sub-
stantially lower generalization, presumably up to sensory
limits.

There is of course also a functional side to general-
ization. Evolution has favoured those behaviour mech-
anisms that are ‘intelligent’ towards the real world. For
instance, stimuli that are similar to one another often
share some causal relation with events in the outside
world. Animals detect and use such regularities, general-
izing knowledge about familiar situations to novel ones.
In addition, animals use general methods to cope with
novelty, including exploratory and avoidance behaviour.
Observed similarities in generalization across taxa may
indicate that evolutionary strategies to deal with novelty
are limited. Note that, without generalization, learning
itself would be seriously limited: by trying out different
responses to novel stimuli animals can adapt by learning,
but without generalization possibly productive responses
would never be tested. Whether everything about
generalization is functional is more uncertain (Enquist &
Arak 1998; Enquist et al. 2002a). Characteristics that seem
difficult to explain as adaptive include, for instance, the
two- or three-fold increase in responding along intensity
dimensions, and biases within sets of stimuli with the
same consequences.

A number of models provide predictions about
generalization (Table 6). Gradient interaction models
predict responding after training on several stimuli by
combining gradients relative to each training stimulus
(Spence 1937; Hull 1943; Kalish & Guttman 1957, 1959).
The latter, however, are not predicted by the model but
assumed or obtained from experiments. Similar assump-
tions about generalization are also present in other
models (Pearce 1987; Shepard 1987). This incompleteness
is avoided in some recent ‘artificial neural network’
models. Here gradient shapes emerge from the inter-
action of input patterns with model mechanisms that
attempt to capture properties of real nervous systems.
Some earlier models, originally based on assumptions
about generalization, can also be reinterpreted as network
models taking into account actual perceptual processes
(for instance, the model in Blough 1975; see Ghirlanda &
Enquist 1999, Ghirlanda 2002). Artificial neural networks
are promising to students of behaviour (Haykin 1999;
Arbib 2003). In combination with models of sense organs,
neural networks can potentially integrate all the factors
discussed above: properties of stimuli, reception, neural
processing and learning. Preliminary results indicate that
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these models provide a powerful explanation for how
generalization is generated, including the consequences
of learning (Blough 1975; Ghirlanda & Enquist 1998;
Ghirlanda 2002).
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Appendix 1: Statistical Tests

Data from the sources listed below were acquired from
published tables, by millimetre paper readouts or by
computer scanning and readout with the g3data software
(freely available from http://beam.helsinki.fi/ ~ frantz/
software/g3data.php). The number following the year in
each citation indicates the number of data sets in
the cited study relevant to the test. Statistical tests
were computed using the statistical package for the
GNU/Octave software (freely available from http://www.
octave.org). All tests are two tailed.

Test 1

Gaussian fits to rearrangement gradients account for
about 3% more of the variance than exponential fits
(Appendix 2). Sign test: Z=163, N=223, P<10~ ',
Sources: Akins et al. (1981, 2), Ames & Yarczower (1965,
2), Baron (1973, 6), Bloomfield (1967, 2), Blough (1969,
3), Blough (1972, 11), Blough (1975, 3), Brown et al.
(1951, 2), Brown et al. (1958, 2), Cheng et al. (1997, 15),
Crawford et al. (1980, 4), Dukhayyil & Lyons (1973, 1),
Dysart et al. (1974, 5), Fay (1970, 6), Friedman (1963, 3),
Frieman & Thomas (1970, 2), Galizio (1980, 2), Galizio
(1985, 24), Gewirtz et al. (1956, 7), Ghirlanda et al.
(2002, 2), Grusec (1968, 4), Guttman & Kalish (1956, 4),
Guttman (1959, 2), Hall & Honig (1974, 4), Hanson
(1959, 5), Hanson (1961, 2), Hearst et al. (1964, 4), Hearst
& Poppen (1965, 3), Hearst (1968, 4), Hearst (1969, 6),
Honig et al. (1959, 12), Honig et al. (1963, 2), Jenkins &
Harrison (1960, 1), Kalish (1958, 4), Kalish & Haber
(1963, 7), Klipec et al. (1979, 6), Lyons et al. (1973, 8),
Marsh (1972, 2), Marx & McLean (1971, 1), Mednick &
Lehtinen (1957, 2), Moye & Thomas (1982, 2), Nallan
et al. (1979, 1), Ohinata (1978, 5), Penkower Rosen &
Terrace (1975, 1), Tempone (1965, 3), Terrace (1964, 3),
Thomas & King (1959, 5), Thomas et al. (1960, 3),
Thomas (1962, 3), Thomas & Bistey (1964, 3), Thomas &
Switalski (1966, 2), Wheatley & Thomas (1974, 4), Wilkie
(1972, 1). Total: 223 gradients. These studies comprise
both inter- and intradimensional tests, as well as tests
where two positive stimuli were subject to different
reinforcement shcedules (e.g. Dysart et al. 1974;
Wheatley & Thomas 1974), producing a gradient with a
single peak.

Test 2

Advantage of Gaussian fits to light wavelength
generalization gradients in pigeons increases with finer
sampling. ros=—0.55, P<10~°. Sources: Akins et al.
(1981, 2), Blough (1969, 3), Blough (1972, 11), Blough

(1975, 3), Dukhayyil & Lyons (1973, 1), Dysart et al.
(1974, 5), Friedman (1963, 3), Frieman & Thomas
(1970, 2), Grusec (1968, 4), Guttman & Kalish (1956, 4),
Guttman (1959, 2), Hanson (1959, 5), Hanson (1961, 2),
Honig et al. (1959, 12), Kalish & Haber (1963, 7), Klipec
et al. (1979, 6), Marsh (1972, 2), Marx & McLean (1971,
1), Moye & Thomas (1982, 2), Penkower Rosen & Terrace
(1975, 1), Terrace (1964, 3), Thomas & King (1959, 9),
Thomas et al. (1960, 3), Thomas (1962, 3), Thomas &
Switalski (1966, 2), Wheatley & Thomas (1974, 4). Total:
98 gradients.

Test 3

Gaussian and exponential fits do not make differ-
ent predictions about peak location in rearrangement
gradients. Wilcoxon signed-ranks test: Z= — 0.87, N=223,
P=0.38. Sources: as Test 1.

Test 4

Line-tilt generalization around a vertical line in pigeons
is skewed towards clockwise rotations. One-sample ¢ test:
to=—2.37, N=10, P<0.05. Sources: individual gradients
from the 0° group in Hearst et al. (1964). One sample t
test, t,o= —5.21, N=20, P<10~*. Sources: average group
gradients from Bloomfield (1967, 1), Hall & Honig (1974,
4), Hearst et al. (1964, 3), Hearst & Poppen (1965, 3),
Hearst (1968, 4), Hearst (1969, 3), Honig et al. (1963, 2).
Total: 20 gradients.

Test 5

Light wavelength generalization around 550 nm in
pigeon is skewed towards longer wavelengths. One-
sample t test: t,,= —8.40, N=18, P<10~°. Sources: aver-
age group gradients from Friedman (1963, 3), Guttman &
Kalish (1956, 1), Hanson (1959, 1), Hanson (1961, 1),
Honig et al. (1959, 4), Marsh (1972, 1), Thomas & King
(1959, 5), Thomas & Switalski (1966, 2). Total: 18
gradients.

Test 6

(1) Strength of response bias (measured as the ratio of
maximum responding to $* responding) in light wave-
length intradimensional tests with pigeons increases as
separation between S$* and S~ decreases. rys=—0.47,
P<0.005.

(2) Distance of gradient peak from S* in light wave-
length intradimensional tests with pigeons increases as
separation between S$* and S~ decreases. r3s=—0.48,
P<0.005.

Sources: Akins et al. (1981, 2), Dukhayyil & Lyons
(1973, 1), Frieman & Thomas (1970, 2), Grusec (1968, 4),
Guttman (1959, 1), Hanson (1959, 4), Honig et al. (1959,
4), Klipec et al. (1979, 6), Marsh (1972, 1), Marx &
McLean (1971, 1), Moye & Thomas (1982, 2), Terrace
(1964, 3), Thomas et al. (1960, 3), Thomas (1962, 3).
Total: 37 gradients.

Test 7

(1) Responding along intensity dimensions keeps above
§* levels, for stimuli further away from S, more often



than along rearrangement dimensions. Fisher’s exact
probability test: P<10~ °. Along intensity dimensions,
responding to the most extreme intensity sampled
was above S§* level in 30 of 38 gradients, and along
rearrangement dimensions in two of 93.

(2) More monotonic intensity gradients are found
along intensity dimensions than along rearrangement
ones. Fisher’s exact probability test P<10 ~¢. Along inten-
sity dimensions, 16 of 38 gradients were monotonic, and
along rearrangement dimensions none of 93. A gradient
is considered monotonic if it never drops beyond S*
(see text).

Sources of intensity data: Baron & Harris (1968, 1),
Bartoshuk (1964, 1), Brennan & Riccio (1973, 4), Ernst
et al. (1971, 4), Huff et al. (1975, 2), Lawrence (1973, 4),
Olson & King (1962, 4), Pierrel & Sherman (1960, 2),
Razran (1949, 3), Rohrbaugh et al. (1971, 1), Steinshneider
et al. (1966, 2), Thomas & Setzer (1972, 4), Wills &
Mackintosh (1998, 3), Zielinski & Jakubowska (1977, 3).
Total: 39 gradients. Sources of rearrangement data: Akins
et al. (1981, 2), Ames & Yarczower (1965, 1), Baron (1973,
4), Bloomfield (1967, 1), Cheng et al. (1997, 8), Crawford
et al. (1980, 4), Dukhayyil & Lyons (1973, 1), Frieman &
Thomas (1970, 2), Galizio (1985, 14), Ghirlanda et al.
(2002, 2), Grusec (1968, 4), Guttman (1959, 1), Hanson
(1959, 3), Hearst (1969, 2), Honig et al. (1959, 8), Kalish &
Haber (1963, 1), Klipec et al. (1979, 6), Lyons et al. (1973,
8), Marsh (1972, 1), Marx & McLean (1971, 1), Moye &
Thomas (1982, 2), Nallan et al. (1979, 1), Ohinata (1978,
4), Terrace (1964, 3), Thomas et al. (1960, 3), Thomas
(1962, 2), Wilkie (1972, 1), Wills & Mackintosh (1998, 3).
Total: 93 gradients.

Sources of size data: Andersson (1982, 1), Baerends
(1982, 1), Basolo & Delaney (2001, 1), Dougherty & Lewis
(1991, 1), Magnus (1958, 3), Pryke & Andersson (2002, 1),
Schaller & Schwalb (1961, 2). Total: 10 gradients.

Test 8:

(1) Intensity generalization produces stronger response
biases than rearrangement dimensions. Mann-Whitney U
test: Z=4.89, N;=38, N,=93, P<10~°.

(2) Size dimensions produce stronger biases than
rearrangement dimensions. Mann-Whitney U test:
U=4.21, N;=10, N,=93, P<10 .

(3) Size and intensity dimensions appear to produce
biases of comparable size. Mann-Whitney U test:

=—0.61, N,=10, N,=38, P=0.54.

Sources: see Test 7. Strength of bias is measured as the
ratio of maximum observed responding to $* responding.

Test 9

Better sampling of the gradient (more experimental
subjects) leads to higher degree of monotonicity in inten-
sity gradients. r,=0.58, N=11, P<0.01. Sources: Baron &
Harris (1968, 1), Bartoshuk (1964, 1), Brennan & Riccio
(1973, 4), Emnst et al. (1971, 4), Hall & Prokasy (1961, 1),
Huff et al. (1975, 2), James & Hughes (1969, 1), Lawrence
(1973, 4), Olson & King (1962, 4), Pierrel & Sherman
(1960, 2), Rohrbaugh et al. (1971, 1), Steinshneider et al.
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(1966, 2), Thomas & Setzer (1972, 4), Wills & Mackintosh
(1998, 5), Zielinski & Jakubowska (1977, 3). Total: 39
gradients. ‘Degree of monotonicity’ is defined as the
absolute Spearman rank correlation between responding
observed to a stimulus and its position along the stimulus
dimension (absolute values are used to cover both
increasing and decreasing gradients). The correlation
reported above is the Spearman rank correlation between
group size and average degrees of monotonicity. The
value N=11 reported above refers to the number of group
sizes found in the surveyed studies (in the range 2-45).

Test 10

Size generalization gradients obtained in inter-
dimensional tests appear to peak at sizes larger than S*.
Wilcoxon signed-ranks test: T=2.20, N=7, P<0.0S.
Sources: Brush et al. (1952, 1), Buss & Daniell (1967, 3),
Dougherty & Lewis (1991, 1), Grant & Schiller (1953, 1),
Tosti & Ellis (1964, 1). Total: 7 gradients. The result holds
when peak position is estimated by either Gaussian or
exponential curves. The linear dimensions of the stimuli
were used as the independent variable (e.g. circle
diameter or square side). Using stimulus area, which is
another natural choice for size dimensions, would have
yielded even bigger asymmetries.

Test 11

Gaussian fits to size gradients account for about 3%
more of the variance than exponential fits (Appendix 2).
Sign test: Z=8, N=8, P=0. Sources: Brush et al. (1952, 1),
Buss & Daniell (1967, 3), Dougherty & Lewis (1991,
2), Grant & Schiller (1953, 1), Tosti & Ellis (1964, 1).
Total: 8 gradients. These studies comprise both inter- and
intradimensional tests.

Test 12

Pigeons generalize less, along the light wavelength
dimension, after a discrimination between two wave-
lengths than between one wavelength and a dark stimu-
lus. Kolmogorov-Smirnov two-sample test: Z=1.67,
N,=48, N,=40, P<0.001. Sources: Akins et al. (1981, 2),
Blough (1969, 3), Blough (1972, 11), Blough (1975, 3),
Dukhayyil & Lyons (1973, 1), Dysart et al. (1974, 1),
Friedman (1963, 3), Frieman & Thomas (1970, 2), Grusec
(1968, 4), Guttman & Kalish (1956, 4), Guttman (1959,
1), Hanson (1959, 5), Hanson (1961, 1), Honig et al.
(1959, 12), Kalish & Haber (1963, 7), Klipec et al. (1979,
6), Marsh (1972, 2), Marx & McLean (1971, 1), Moye &
Thomas (1982, 2), Penkower Rosen & Terrace (1975, 1),
Terrace (1964, 3), Thomas & King (1959, 5), Thomas et al.
(1960, 3), Thomas (1962, 3), Thomas & Switalski (1966,
2). Total: 88 gradients.

Appendix 2: Data Analysis

Fitting procedure

We describe briefly the fitting procedure leading to the
results on gradient shape reported in the main text.
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By ‘exponential’ and ‘Gaussian’ shapes we mean the
following functions, respectively:

fex)=a exp(— x — bl/c)+d (1)
fo=a exp(— (x — b)*/2c*) +d )

where, in both functions, the maximum value of the
function is a+d, the peak position is b, ¢ determines how
quickly the gradient drops from the peak, and d is the
minimum function value (approximately reached very far
from the peak). The parameter d has been included
because not all empirical gradients fall to zero within the
probed stimulus range. However, d was not fitted; rather,
it was set equal to the minimum gradient value, consist-
ent with its meaning in equations (1) and (2). Using a, b
and c as fitted parameters, we fitted both equations (1)
and (2) to the studies listed as sources for Test 1. For
fitting we used the Marquardt-Levenberg algorithm pro-
vided with the Gnuplot software, version 3.7.1. (available
via anonymous ftp from ftp://ftp.ucc.ie/pub/gnuplot).
For each data set and each fit, we then computed the
Pearson correlation r, and we used r? as an estimate of
how much of the variance in empirical data is accounted
for by the fitted curve (a measure of goodness of fit). We
thus had two samples of r*’s, from the exponential and

Gaussian fits to each gradient. These can be used in
statistical tests as detailed in Appendix 1.

Testing for gradient symmetry

To test for symmetry of gradients obtained from inter-
dimensional tests, we divided the gradient into a ‘left’
and a ‘right’ side, using S* as the reference point. We then
summed all responses to stimuli on the same side, obtain-
ing a left sum L and a right sum R (responses to S* are
excluded from both L and R). R and L were combined as
follows to yield the test statistics:

L
L+R

which has the meaning of proportion of responses to the
left of S*. By construction, its value is independent of
whether published data are reported as absolute numbers
of responses or as proportions of responses to each stimu-
lus. Under the null hypothesis that a set of gradients
shows no systematic asymmetry, the expected value of / is
0.5. In testing this hypothesis by one-sample f tests (see
Appendix 1), we considered the same number of stimuli
on each side of $* (a few times discarding a data point),
and covering the same range.
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