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We simulated mimicry evolution by allowing three populations to cocvolve: two populations 
of scndrrs and oiic of receivers. Artificial neural nctbvorks were used to model receivers, and 
it was assumed that recognition was inhcrited. The senders’ signals consisted of nine 
dimensions. Changes to receivers and senders were caused by random mutations during the 
course ofthe simulation. Whereas it paid both types of senders to elicit the same response 
from the receiver, it benefited the receiver to respond in this way only towards one of the 
sender types. The receiver was thus in conflict with one of the senders, e.g. as in Batesian 
mimicry. hlonotonically increasing response gradients caused the appearance of the model 
and the mimic to move in the same direction. Mimicry evolved because the mimic approached 
the model fastrr than the model moved away. Even after mimicry was established the model 
and the mimic were constantly changing in appearance. Our results conform with what is 
known in comparative psycholqgy and etholocgy about how animals respond to stimuli. 
Several of our results arc a direct consequence of recognition and have not, to our knowledge, 
been reported before, showing the importance of considering the recognition mechanism in 
detail when studying mimicry. 
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Mimicry was suggested as one of the first major pieces of evidence in support of 
Darwin’s theory of evolution through natural selection (Wallace, 1866; Poulton, 
1898). As such it has received much attention (e.g. Muller, 1879; Dixey, 1897; 
Marshall, 1908; Dixey, 1909; Fisher, 1927, 1930; Nur, 1970; Turner, 1977, 1987; 
Sheppard et al., 1985). 

Mimicry typically involves three players: two senders and one receiver. For 
mimicry to evolve it is essential that both senders benefit from eliciting the same 
responsc from the receiver. This provides the incentive for looking alike. Two 
situations can occur depending on whether it pays the receiver to react with a 
faboured response towards only one of thc senders or to both. Classical examplcs 
are Batesian and Mullcrian mimicry. Both involve aposematdwarning signalling 
to a predator, and the Favoured response is to not be attacked. In Batesian mimicry 
a palatable prey species mimics the appearance of another specics noxious to 
predators thus reducing its risk of bring attacked (Bates, 1862). In Mullerian mimicry, 
two aposematic noxious forms conform to the same aposematic signal to their 
mutual benefit (Muller, 1879) and there are no conflicts with the receiver. 

Several hypotheses have been generated to explain how the appearance of the 
senders (or their signals) changes or moves relative to each other during evolution. 
Whcn conflicts occur, the terms ‘model’ and ‘mimic’ are generally used to identify 
the two sendcrs; this tcrminolocgy is also adopted here. The model and the receiver 
have mutual interests, whereas the mimic is the player with interests that conflict 
with those of the receiver. These terms suggest that it is the appearance of the 
mimic that changes and becomes similar to that of the model. In fact, it has been 
argued that the appearance of the model does not change at all during evolution 
(e.g Dixey, 1897). This reasoning is based on the assumption that the response 
gradient reaches its maximum with the average appearance of the model. Thus 
variations (mutations) in the model will be gcnerally less efficient. Throughout this 
paper we will refer to response gradients when we describe how the receiver’s 
sensitivity to stimulation varies along different dimensions. 

Fisher (1 930) argued against Dixey and claimed that “selection will tend to modify 
the model so as to render it different from thc mimic and as conspicuous as possible”. 
However, he retained the idea that the gradient reaches its maximum with the 
average appearance of the model. His explanation was based on the assumption 
that the gradient is asymmetrical so that mutations away from the mimic are less 
disadvantageous than those towards the mimic. 

More recently, researchers (Nur, 1970; Turner, 1977, 1987; Sheppard et al., 1985) 
have arLped that the model moves away from the mimic but at a slower rate. The 
mimic must be able to approach the model faster than the model moves away for 
mimicry to become established (Fisher, 1930). The explanation of why the model 
tends not to move remains the one offered by Dixey (1897). Attempts to explain 
why models should move away from the mimic are however more vague. It seems 
necessary for the appearance of the model to change during evolution, otherwise 
Mullerian mimicry becomes problematic. Here both senders can be viewed as 
models for each other. If the appearances of the two senders are dissimilar and both 
are at their own response maximum can they ever evolve into one signal? A way 
out of this dilemma has been to introduce a two-step process (Nicholson, 1927; 
Fisher, 1930; Ford, 1963). The first step is taken by the mutation of a modifier gene 

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article-abstract/66/2/145/2661309 by Stockholm

s U
niversitet user on 18 N

ovem
ber 2019



regulating a super-gene complex, bringing one species closer in appearance to the 
other. In the second step, minor adjustments occur resulting in a perfect resemblance. 

We believe that the issucs discussed above can only be resolved if we consider in 
detail the properties of the receiver’s recognition mechanism. Most studies of mimicry 
have focused on strategic factors (but see Fisher, 1927; Turner, 1981; Dittrich et al., 
1993). Those studies taking behaviour mechanism into account have focused on 
learning and forgetting rules (e.g. Turner & Speed, 1996), not on the abilities of 
generalization and discrimination of the receiver. An important reason why mech- 
anisms of recognition traditionally have not been included in models of mimicry 
evolution was the lack of useful models of biological recognition. 

In this paper we will make use of recent advances in modelling nervous systems- 
termed artificial neural networks-and use them as a model of the receiver’s 
recognition mechanism. Artificial neural networks have provided realistic models of 
stimulus control (Maki & Abunawass, 1991; Pearce, 1994; Enquist & Arak, 1998; 
Ghirlanda & Enquist, 1998; but see Dawkins & Guilford, 1995; Kamo et al., 1998) 
and have been used for studying the evolution of signal form (see e.g. Enquist & 
Arak, 1993). One decisive advantage of artificial neural network models when 
compared with other models of recognition is their ability to generalize in a realistic 
fashion (Ghirlanda & Enquist, 1998). This allows us to simulate the evolution of 
signals in which the form of signals can change freely in many dimensions. 

The aim of this paper is to gain insight into the role of recognition in mimicry 
evolution. In evolutionary simulations we have investigated a case with a conflict 
between the receiver and one of the senders. \/t“ assume that signals as well as 
recognition are genetically inherited. 

THEORY 

The simulation involves three populations (species): one population of receivers 
and two of senders. The receivers are artificial neural networks that are able to 
respond to the signals of the senders. All populations consist of a number of different 
types of individuals and the number of each type increases or decreases depending 
on their fitness. New types originate by a mutation of existing types. The fitness of 
a receiver type is determined by its responses to the senders and a stimulus that 
does not evolve. The non-evolving stimulus is a stimulus in the receiver’s surroundings 
that requires a different response from that of the model. In reality, many stimulus- 
response relationships are coded together in the nervous system. We included this 
stimulus in order to prevent the network from becoming oversensitive to stimulation. 
The fitness of a sender type is based on the ability to elicit the favourable response 
(‘identified as model’) from the receivers. 

The signals arc complex in the sense that they are made up of an array of values, 
i.e. the signals are multidimensioiial (Shepard, 1987). We will often describe a signal 
as a point in a signal space, and signal evolution as movement in this space. The 
distance between two points in the signal space is expressed by the Euclidean 
distance. The signals may represent any kind of stimuli: visual, olfactory or acoustic. 
The neural network coding of signals does not deal with sense specific properties of 
the signals or sense organs, but focuses instead on the coding of the information in 
the neurones. Hence, the model is equally applicable to all sensory systems. 
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TABLE 1. Simulation paramctcrs for the reccivcr 

Population siLe 1000 
Rlax number of typcs 100 
Mutarits per generation 1 
Fitness, response to model 1 .o 
Fitness, r c s p i s e  to mimic - 1.0 
Fitness, response to irrclcvant - 1.0 
Fitncss, no rcsponsr 0.0 
Nrtwork, input cells 9 + 1 
Network, liiddcn cells 5 
Network, output cclls 1 

Details o f  ppeJ 

The individuals of the receiver population arc modelled as artificial neural 
networks or more specifically as multi-layered perceptrons (see e.g. Haykin, 1994). 
The network is organized in three layers: a receptor layer consisting of nine receptor 
cells plus a bias neurone, an intermediate layer of five cells, and an output layer of 
one cell. Each cell in a layer is connected with a synapse to all cells in the next 
layer. The total number of synapses is thus 55. The output of the network ranges 
between 0 and 1 and is interpreted as the probability of response-hrreafter called 
the response. 

The signals and the irrelevant stimulus consist of nine dimensions, with intensity 
between 0 and 1 in each dimension. The irrelevant stimulus has the value 0.5 in 
all nine dimensions. The populations of receiver and senders can consist of up to 
100 different types. The total number of individuals is fixed, whereas the number 
of individuals of each type varies during the simulations. For more details see 
Tables 1 and 2. 

Mutations ofthe Qpes 

From each of the three populations, a proportion (0,001) of the individuals is 
randomly selected for mutation in each generation. If the number of mutants does 
not turn out as an integer a random number between 0 and 1 is added and then 
the new number is truncated. Thus, the nearest upper or lower integer is alternatively 
used so that the average equals the original number. When an individual is selected 
for mutation, each of its units (i.e. synaptic weights or signal dimensions) is mutated 
with a probability that on average results in two units being modified. Receivers 
are mutated changing each synaptic weight with a probability of 2/55 (55 is the 
number of synapses in the network) by adding a random normal distributed number 
(p=O, 6=0.2) to its previous value. Senders arc mutated by modifying each 
dimension value with a probability of 2/9 (nine is the number of dimensions) by 
adding a random normal distributed number (p = 0, 6 = 0.05) limited to between 0 
and 1. These parameters are selected to be large enough to enhance the speed of 
simulation, but low enough to have an efficient selection. The number of types is 
kept within boundaries due to a balance between mutations and the extinction of 
rare types (i.e. drift-mutation equilibrium). 

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article-abstract/66/2/145/2661309 by Stockholm

s U
niversitet user on 18 N

ovem
ber 2019



It9 

TABLE 2. Stimulation ~~aramr tc r s  for senders and other stimuli 

Rlodrl Rlimic 1rrclcv;mt 
stirnulust 

Population sizc 
Rlax iiurnhcr 0 1  tylxs 
Rlutants pcr grncratioii (avcrage) 
1:itncss. rrsponsr 
Fitness, responsr 
Stirnulus dirnciisions 

1000 500 1000 
I00 I00 I 

I 0 . 5  
I ,o I .o 
0.0 0.0 
1) $1 9 

~~ 

t'l'echnicall) thc irrclcvant stimulus is trcatcd a s  a popul;ition. 

Next generation propagation 

Reproduction is simplified as semelparous and asexual. The individuals of the 
ncxt gcneration are copies of their parent type, or if they are sclected for mutation, 
a new type slightly modified from thc parent type. Parents arc sclected randomly 
weighted by their relative fitness. 

The three populations are denoted R, for the receiver population, and M and N 
for the two sender populations. The types in each population are denoted by small 
letters so that ~ E R ,  m&f, and n m .  We express the fitness contribution to an 
individual of type i from the interaction of members of population 3 as the sum of 
all responses to all individuals member of J :  

Here, 5 is the number of individuals of typcj, and p ( i j )  is the response probability 
(the receiver output) from the interaction between types i andj .  One of the types 
must be a sender and the other must be a receiver. 

The fitness function for a receiver of type r is then given by the sum of its 
interactions with the two sender populations and the irrelevant stimulus i 

Wr = dz& + ew', + hw:. (2) 

The parameters, a!, e and h are interaction parameters determining the payoff for 
the rcceivcr to interact with the two different senders and the irrelevant stimulus. 
The fitness parameters were set so that the receiver would benefit when responding 
to the model (a!= 1) and punished when responding to thc mimic (e= - 1). Response 
to an irrelevant stimulus was also punished (h= - 1). The population size of the 
model was set to 1000 and the population sizc of the mimic was set to 500. For the 
irrelevant stimulus, which occurs in only one typc, its 'encounter frequency' tl is set 
to 1000. For more details see Tablc 2. Similarly thc fitness functions for a sender 
of type m and n arc 

Wh =Pi (3) 

respectively. 
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all cells 

all cells 

one cell 

I I I 1 
0.0 0.3 1 .o 3.0 

Euclidean distance 

Figure 1. Some visualized examples of Euclidean distances in signals of nine grey scale dimensions. 
TWO patterns, one homogrnrous arid one hctcrogcncous, arc chaqgcd in one or scvcral dimcnsions. 

The simulations are initiated with all senders in each population bclonging to 
one type, assigned a random signal. In addition, the receiver population is initiated 
as one type. The synaptic weights are here set randomly to a value between 0.1 
and - 0.1. This is a standard procedure to avoid initial stalling in the simulations 
(Haykin, 1994). Each individual simulation was run for 50000 generations. 

Euclidean di.stance 

In order to compare more easily the signals of the two sender populations we 
calculated the average signal in each population. The average signal is simply thc 
signal with the average valuc in each dimension. The distance between two signals 
is measured by the Euclidean distance: 

D(a,b) = Jm (5) 

where i is a dimension of the signal vectors a and b emitted by two senders. When 
using nine dimensions as in our case, the maximum dissimilarity is 3. The expected 
distance between random signals is 1.2. Figure 1 gives examples of Euclidean 
distances if the signals are given a visual interpretation. 

The simulations were run for 50000 generations and repeated 100 times. The 
number of generations simulated was well beyond that at which they reached 
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1 3 1 

0 10000 20000 30000 40000 50000 

Generation 

Figurr 2. Euclidem distaiicc Iwtwecii the average signals of thr two scnders duriiig the course of 
simulations. Simulated data is shoivn for every 1OOOtli generation. Error Imrs indicate standard error 
of estimated mean. 

equilibrium in terms of distance between the senders (Fig. 2). The distance between 
the model and the mimic settled to an average of D=O.16 after about 10000 
generations. The rcecivcr learned very quickly to have a low response to the non- 
evolving stimulus, which it kept throughout the simulations (data not shown). 

The movements of the model and the mimic depend 011 their relative distance 
(Fig. 3). When the model and the mimic are rather similar (D<0.2), they both move 
away from each other. Otherwise, the mimic tends to approach the model, while 
at the same time the model tends to move away from the mimic. The strength of 
these movements weakens as the distance between the types decreases. The movement 
away by the model is, however, for most of the range less than the approaching 
tendency by the mimic. Calculated over the wholc data set the average escaping 
movement of the model is 011 average smaller (AD= 4.4.10-' per generation) than 
the average approaching movcmcnt by the mimic (AD= 5.8. lo-' per generation). 
The dynamics suggest an equilibrium difference between the model and the mimic 
in the interval of D= 0.15- 0.2. This fits with the observed equilibrium obtained 
after 10 000 generations of D = 0.16 (Fig. 2). However, the distribution of Euclidean 
distances between the average signal of the model and the mimic has its maximum 
in the interval 0=0-0.05 (Fig. 3). This probably reflects the truncation of the 
distribution to the left, i.e. the Euclidean distance can not be negative. 

The response gradients typically show a monotonical incrcasc (Fig. 4). This 
suggests that in order to elicit the highest response, the model and the mimic move 
in the same direction. The average response to the model and the mimic is 0.97 
and 0.95 respectively, which indicates that the response gradients most commonly 
increase towards the model. Not surprisingly, the receiver is generally better able 
to separate the two senders (higher response difference) the more dissimilar they are 
in appearance (Fig. 5). The response to the model and the mimic decreases the 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Euclidean distance 

gc relative movement of model and mimic as a function of avcragc Euclidcan distance. 
The relative movement of the model (solid upward triangle) is calculated as D(m,+ ,,fi,>) ~ ll(mJ~,J, 
where U is the Euclidean distance, m the average signal vector in the model population, fi is the 
ai’cragc signal vector in the mimic population, t is the current gcncration and hence t+ 1 is the next. 
The movement ofthe mimic (open downward triangle) is calculated in a corresponding way. The  net 
movement is denoted by the line. Positive movement indicates moi’cmciit resulting in an increased 
distance bet\vecn the two scndcrs (i.c. away), and hence a negative movement indicates a decrease in 
sender distance (i.e. approach). Error bars arc standard errors of estimated mean. Bars at thc bottom 
shows thc proportion of all o l x c n d o n s  ( n  = 4999900) in each distance range. 

more dissimilar they are (Fig. 5). As the distance between the model and the mimic 
increases, the response gradient becomes steeper (Fig. 5), and consequently the rate 
of signal change increases (Fig. 3). Consequently, events when the receiver is able 
to make a clear distinction between the model and the mimic are rare. At these 
instances, there is a strong selection for the mimic to become more similar to the 
model. When the two senders are very similar, the generalization gradient in the 
vicinity is rathcr flat. In this rangc, both senders move away from cach other, mainly 
due to random mutations. 

The monotonically increasing gradients could be the cause for the model and the 
mimic signal to evolve towards the corners of the signal space (i.e. all dimensions 
are at one end of the extreme; Fig. 6). In the second half of the simulations the 
model is on average a distance of D=O.15 away from the nearest corncr in this 
spacc. The corresponding figure for the mimic is D= 0.16. In most cases, the senders 
were at one edge in the stimulus space (i.e. the senders wcre at the extreme in least 
one dimension). 

Figure 3 may give the impression that the model always moves away from the 
mimic. If we resolve movement data on the basis of the response diffcrence we can 
actually see that the roles as ‘model’ and ‘mimic’ can occasionally be reversed (Fig. 
7). In fact, the response to the mimic is higher than to the model in 39.5% of all 
generations. Notc howcvcr that in the majority of these cases the model and the 
mimic are very similar in appearance (Fig. 7). 
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0.9882 
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model Sender position mimic 

Figure 4. E'i\.e examples of response gradients showing thrir typically moriotonical increase. The 
gradients were obtained by saving the nrtworks of the most common type together with the average 
signal of the model and the mimic at regular intends during thc simulations. After the simulations, 
a set of stimuli was generated. These stimuli are points on a vector in thc stimulus space which 
intcrsccts through the average model and the average mimic signal. The vector does not extend 
beyond the model of the mimic, which indicates that both sendrrs arc at the edge of the stimulus 
spacc. 'Thc rrsponse fiinctions shown are thus each the response of one of the saved networks to the 
average model signal, thc average mimic signal and the signals in between. 

Figure 5. Average rccciver response to model (A) and mimic (V) as a function of the average Euclidean 
distance between the two senders. The thick solid line indicates the slope of an approximated linear 
rcsponsc gradient along thr vrctor intersecting model and mimic average averages. Error bars arc 
standard errors of estimated mean. 
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Generation 
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Figure 6. A\.cragc Euclidean distance of modrl (A) and mimic (Vj from the nearest corner at every 
10OOtli generation of the simulation. Error h r s  arc standard errors of rstimatrd m a n .  

0.0 0.2 0.4 0.6 0.8 1 .o 
Response difference 

Figure 7. Average change per generation in the Euclidran distance lirtwcrn the rnotlcl and the mimic 
function of diffcrcncc in average rrsponsr. l 'hc  response difrerence is measured as the diffcrvncc 

in average rrsponsc ol' the receiver population to the model minus the average response to the mimic. 
The movrmcnts are calculated as in Fig. 3. Error Inrs  arr standard errors ol' estimated mean. Bars 
at the Imttom shows the proportion of' all observations (n = 4999900j in each diffcrcncc rangr. 
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1. Mimic starts 
approaching 

2. Mimic close: 3. Gradient has 
selection for shifted: selection 
discrimination on the model 

I 3.5 

4. Mimicry is maintained 
under continuous change 
of all three players 

Figure 8. Principle of most common response gradients along one dimension. The nctwork usually 
develops a rrsponsc to the model and the mimic along a dimension in which they arc distinguishable. 
I he response to the model is then higher than to thc mimic (left graph), but the selection gradient 
(the derivati\.e of the response curve) may be highest for the mimic (Fig. 4). As a consequence, thc 
mimic will move faster to the right than the model, and occasionally aplxar ahcad of thr model 
diciting a h i g h  rcsponsc than the former. In these reversed positions, the roles of the two senders 
are also reversed. thr mimic now being a modrl for thc 'model'. 

r 1  

Our results show that the modelling approach attempted here is a profitable one 
for studying mimicry, an evolutionary problem that offers a number of challenges 
to theoretical work. Of course, since this is the first attempt at modelling mimicry 
with a new technique the results generate as many questions as they answer. It is 
clear, though, that in contrast to earlier thinking, mimicry games may be more 
dynamic and that the players constantly change in appearance. 

One of our most interesting results is that while in most generations the mimic 
approached the model, the model simultaneously tended to move away from the 
mimic. Occasionally this pattern was reversed. We can understand these results in 
light of the recognition mechanism by considering response gradients. Typically, 
neither the model nor the mimic is located where the receiver is most likely to react 
with the favoured response. Instead both players are evolving towards the response 
peak with the model usually being somewhat ahead, i.e. closer to the peak than the 
mimic (See Fig. 8). The reason why the model is not at the response peak is that 
the receiver constantly tries to discriminate between the model and the mimic. In 
doing so it may pay the receiver to take the cost of being slightly less sensitive to 
the model if this is compensated by a larger drop in sensitivity towards the mimic. 
In practice, this reorganization of the memory causes a displacement of the response 
peak away from both the model and the mimic. This displacement or peak shift 
causes the model to depart from the mimic. The existence of peak shift and 
supernormal stimuli are general results from studies of how stimuli control behaviour 
(e.g. hlackintosh, 1974; Hinde, 1970; Rilling, 1977, Enquist & Arak, 1998). 

For mimicry to evolve it is of course necessary that the mimic approaches the 
model faster than the model moves away as long as the appearance of the two 
players is different (e.g. Nur, 1970). This was also clearly seen in our simulations 
(See Fig. 3). Two factors seem to contribute to this result. One is the tendency for 
the response gradient to be steeper for the mimic than the model (Fig. 4). The other 
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factor is the edges and corners of the stimulus space which limit the movement of 
both players and in particular hinders the model from moving away. For instance, 
if red hue is selected, this dimension will eventually be exhausted. When this happens, 
an edge of the stimulus space has been reached and no further evolution is possible 
along that particular direction. This restricts the mobility of the model; while 
evolution may occur in other dimensions, it gives the mimic an increased possibility 
for approaching the model in appearance. 

Recent theory on Batesian mimicry evolution views response gradients as hell- 
shaped and consider., the problem along a single dimension (Sheppard et al., 1985; 
Turner, 1981; Fig. 3). Although this picture is intuitively appealing, it ignores the 
fact that multi-dimensional signal space separation occurs in many dimensions and 
many evolutionary trajectories are possible. It has been discussed that both empirical 
data and theory suggest that the steepest response gradient is a monotonically 
increasing function and not bell shaped (Ghirlanda & Enquist, 1998, in prep. See 
also intensity generalization; Mackintosh; 1974). To compare the single dimensional 
theory by Sheppard et al. (1985) and Turner (1981), and our multi-dimensional 
theory, we have to acknowledge that mimicy evolution has two phases: the initial 
phase when a signal of a species becomes similar to another species signal, and a 
second phase in which the mimicry is maintained. The single dimensional theory 
assumes that the two species are initially separated in one dimension and are 
protected by species-specific bell-shaped response (i.e. the predators' neural responses) 
which curves around each species mean appearance. Assuming that the species can 
only change its appearance along the single dimension, this creates a problem of 
how the second species could become a mimic of the model since intermediate 
forms would be less protected. 

Monotonically increasing gradients and multidimensionality may explain why a 
mimic can approach the model when being very dissimilar in appearance. The 
multi-dimensional theory of mimicry evolution based on our simulations is depicted 
in Figure 8. Mimicry evolution starts with the mimic beginning to approach the 
model (Step 1 in Fig. 8). When the mimic comes close in appearance to the model 
selection starts to act on the receiver to discriminate between the model and the 
mimic (Step 2 in Fig. 8) leading to a change in the response gradients. One 
consequence of the latter is that the appearance of the model no longer resembles 
the appearance that will elicit the highest response rate from the receiver. Thus the 
model is now under directional selection (Step 3 in Fig. 8), typically away from the 
appearance of the mimic. Eventually, mimicry is established, although not as a 
stable situation. Instead the three players constantly change; the degree of mimicry 
varies within limits and it is not always the model that is mogt efficient in eliciting 
the favoured response (Step 4 in Fig. 8). The implication of this is that there is no 
need for a special mechanism such as the mutations of modifier genes (see c.g. 
Turner, 1977) to bring the mimic reasonably close to the model. 

The concept of dimensions may he abstract, but this is deliberate in order to stress 
the generality of the mechanisms. In a sender-receiver interaction the dimensions of 
the signal may differ considerably between its source of generation in the sender 
and its implementation in the receiver. For example, the dimensions of a signal may 
be defined on the basis of the genes coding for its expression, but are rather different 
during its transmission in a physical element-for instance, as sound or light. On 
the receptor level of the receiver, visual impressions have a lot of spatial dimensions 
in the form of cones and rods behind the retina. Sound impressions have as many 
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dimensions as frequency-unique receptor hairs in the cochlea. It is apparent that 
the dimensions at each receiver's receptor lcvel does not correspond directly to the 
dimensions of the sendcr genes that control the signal expression. At higher perceptual 
levels, the sensory dimensions have been reduced to a smaller number of feature 
dimensions such as colour or shape, which may correspond more closely to the 
dimensions on thc sender level. Our artificial neural networks represent this higher 
level of perceptual processing. 

The continuous movements of the model and the mimic have several consequences. 
The speed of evolution will be higher. There are also likely to be consequences for 
signal form. The presence of the mimic may push the model to a more extreme 
appearance (e.g. saturated colours, contrast with background, wild morphological 
structures). This is likely to be particularly important when such exaggerations are 
costly (See Enquist & Arak, 1998, for a general discussion of this). 

Recognition was inherited rather than learned in our simulations. This requires 
comment since learning is important in many famous mimicry cases such as palatable 
butterflies mimicking poisonous ones, thereby avoiding attacks from birds (Brower, 
1958a-c; Benson, 1972). Mimicry, however, also occurs when recognition is primarily 
inherited. For instance, mimics have exploited mate recognition in insects many 
times. One such example is male fireflies of the genus PhotinuJ that are attracted to 
the flesh-responses of predatory females of the related genus Photuris which mimic 
those of Photinur females (Lloyd, 1965). Another example is the ability of some 
orchids to mimic female wasps and thereby attract males, which as a consequence 
carry pollen between flowers (Dafni, 1987). Obviously, our results are relevant to 
cases such as those just described in which recognition is mainly inherited. One 
may argue on theoretical grounds that the results may also have relevance for cases 
with learned response. If each receiver interacts many times with senders, the 
receiver will rarely be in the learning phase when it is encountered by a sender. 
When the selection for sender signals comes mainly from trained receivers, the 
difference depends less on whether the response is inherited or learned. 

Thanks to Anthony Arrak, Gabriella Gamberale, Risa Rosenberg, Mike Speed, 
Birgitta Tullberg, and an anonymous reviewer for suggestions improving the manu- 
script. The study was supported by the Swedish Natural Science Research Council. 
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