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Discrete conventional signalling of a continuous variable
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ABSTRACT

In aggressive interactions, animals often use a discrete set of signals, while the properties being signalled
are likely to be continuous, for example fighting ability or value of victory. Here we investigate a
particular model of fighting that allows for conventional signalling of subjective resource value to occur.
Perfect signalling and no signalling are not evolutionarily stable strategies (ESSs) in the model. Instead, we
find ESSs in which partial information is communicated, with discrete displays signalling a range of
values rather than a precise one. The result also indicates that communication should be more precise in
conflicts over small resources. Signalling strategies can exist in fighting because of the common interest
in avoiding injuries, but communication is likely to be limited because of the fundamental conflict over
the resource. Our results reflect a compromise between these two factors. Data allowing for a thorough
test of the model are lacking; however, existing data seem consistent with the obtained theoretical results.
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Animals signalling in aggressive interactions use displays
that are predominantly discrete (Cullen 1966; P. L. Hurd
& M. Enquist, unpublished data), while the underlying
properties being signalled are almost certainly con-
tinuous (e.g. relative fighting ability or estimated value of
victory). It seems somewhat paradoxical that discrete
displays should be used to signal continuous properties.
One explanation is that the reduction in probability of
errors in transmission favours discrete signals (Morris
1957). Johnstone (1994) has modelled the evolution of
this effect in the Sir Philip Sydney game.

An alternative explanation is that there is some
strategic value in using an ambiguous signal. Enquist
(1985, model II) demonstrated this effect in a two-signal
model. Here we present a generalized version of the
model, analysing it further with respect to the tendency
towards the use of discrete conventional displays.
Correspondence: M. Enquist, Division of Ethology, Department of
Zoology, University of Stockholm, S-106 91 Stockholm, Sweden
(email: magnus@zool.su.se).
MODEL AND RESULTS

Enquist (1985, model II) examined a situation in which
two contestants meet over a nondivisible resource of
some given size. The value, v, of this resource varies
between contestants, so that different individuals are said
to have different subjective resource values. When the
contest starts each player knows its own subjective
resource value but not that of the opponent.
0003–3472/98/090749+06 $30.00/0 749
The contest proceeds in one or two steps. In the first
step each player shows a signal, or decides to give up,
based on its own subjective resource value. Players act
simultaneously. If both decide to give up, the resource is
randomly awarded to one of them. If one player gives up,
the resource is awarded to the other. No costs are paid in
these cases. If both players give a signal the contest
proceeds to the second step, in which the contestants
simultaneously decide whether to give up, or attack (and
fight) based on the opponent’s signal and their own
subjective resource value. The minimum expected cost of
a physical fight is c and additional costs of fighting
depend on how willing the two players are to persist in an
escalated contest. We refer to c as the ‘initial cost’ of
fighting. As shown below, the cost c is crucial for the
stability of a signalling strategy, since it is the only factor
that prevents bluffing. In reality, such a cost may arise
from attacks by the opponent that cannot be avoided,
even if the animal tries to flee.

Enquist (1985) considered the following communi-
cation strategy S: if v is above a threshold v1 signal 1 is
used; if vi"1§v>vi then signal i is used and so on, and if
v≤vn"1 then the decision is to give up (we can say that
signal n is giving up). The contest proceeds to the second
step if both players signal. If they use different signals, the
individual that used the signal indicating the lowest
subjective resource value decides to give up (i.e. the signal
with the higher index). If both players use the same signal
they fight. This strategy reveals only some information
about the state of the signaller, as each signal indicates a
range of subjective resource values.
 1998 The Association for the Study of Animal Behaviour
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Figure 1. Use of signals as a function of subjective resource value for
different values of f. (f is the ratio between initial cost and average
resource value.) Within each interval a given signal is used, as
indicated. One interpretation of an increasing f is that the initial cost
of fighting increases, while keeping the distribution constant.
Another interpretation is that the initial cost is constant but the
average subjective resource value decreases. v/vM is the ratio
between actual resource value and the maximum resource value.
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Figure 2. Proportion of interactions ending in a physical fight as a
function of f when the repertoire size is two, three or five signals. (f
is the ratio between initial cost and average resource value.) Consid-
ering more than five signals gives results that are indistinguishable
from the five-signal case in the graph. The formula for the pro-
portion pn(f ) of interactions resolved by a physical fight, is
pn(f )=Σn

i=1(vi−vi−1)2, with vn=0, and v0=vM.
The strategy S was shown to be an evolutionarily stable
strategy (ESS), given a set of assumptions: (1) two signals
are used, in addition to the option of giving up; (2) the
subjective resource value is uniformly distributed in the
population in the interval [0,vM]; and (3) the cost of
fighting, successive to the initial cost c, is modelled by the
war of attrition with random rewards (Bishop et al. 1978).

Relaxing the first assumption, we find (see Appendix 1)
that for a repertoire of n signals the thresholds are given
by:

where v0=vM. We note that each threshold is defined by
the higher ones (i.e.with lower indices), so that when
passing from n signals to n+1 the thresholds that deter-
mine the use of the first n signals retain the same values,
and the new signal ‘eats up’ some of the space that caused
giving up in the n-signal situation. Thus, when adding
signals, these divide up the lower end of the resource
interval, leaving unaltered the use of the pre-existing
ones. This property is particular to the choice of a uni-
form distribution for the resource value, and it does not
strictly hold for a generic distribution function. Even in
other cases, however, the thresholds regulating the use
of signals change very little when the repertoire size
is changed (see below), so that we can take the simpler
case equation (1) to be representative of a more general
situation.

It is clear from equation (1) that the interplay between
initial cost c and the maximum resource value vM deter-
mines the values of the thresholds vi. To take into account
this fact we introduce the variable f, defined as the ratio
between c and the average of v. In the present case we
have f=2c/vM, and in terms of f, equation (1) becomes:

so that the thresholds depend on vM only as a scale factor
(related to the units in which resource value is measured).

We see from equation (1) that it is the inescapability of
the initial cost, c, that stabilizes communication; if in fact
we consider the limit c→0, the result is vi=0 for all
thresholds, that is, no signalling, and no giving up either.

The general result is illustrated in Fig. 1, where we show
the partitioning of the resource interval for four values of
f. When the initial cost of a fight is very low compared to
the resource value, for example in fights over a valuable
resource such as a mate or a territory, even animals with
very low resource value use the most effective threat
(leftmost bar in Fig. 1), and very few individuals choose to
give up. In this case, as a consequence of a low value of
f, very few signals are used with significant frequency
even if a large number were available, and many of the
interactions are settled by physical fighting (Fig. 2).

When f increases, more and more signals are used in
practice, the most effective one losing ground in favour of
intermediate threats. This corresponds to situations in
which the cost of being attacked is much more than the
mean resource value, for example in the case of contests
for a small amount of food or a resting site. In these cases
(see e.g. the rightmost part of Fig. 1) the signals are more
evenly spaced, meaning a more ‘honest’ communication
of the individual’s state: when fighting entails a high
unavoidable cost, bluffing becomes less profitable. Note
that in this situation each signal has the same likelihood
of being followed by an escalated fight. This means that,
for very high values of f, we should not necessarily expect
a big difference between probabilities of escalation after
different displays, suggesting that it might be difficult in
practice to rank displays based on such data. Clear differ-
ences, however, are expected between displays with
respect to the probability of winning.

The giving-up threshold, unlike the other thresholds,
changes when the number of signals varies, making
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Figure 3. Effect of removing the giving-up option on the ESS. The
threshold values change from those in (a) to those in (b), but the
structure of the solution is the same. In the graph f=1, where f is
the ratio between initial cost and average resource value. v/vM is the
ratio between actual resource value and the maximum resource
value.
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Figure 4. Proportion of interactions ending in a physical fight as a
function of f when the players do not have the option to give up.
(f is the ratio between initial cost and average resource value.) The
plotted lines refer to repertoire sizes of two, three or five signals. The
number of escalating fights decreases when the players are allowed
to use more signals (cf. Fig. 2).
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Figure 5. Use of signals as a function of subjective resource value in
the case of an exponential distribution of resource value,
g(v)=exp(−v). The initial cost is 0.3, and the solution for repertoire
sizes of one and five signals are shown. The threshold beyond which
the most effective threat is used changes from v0.0.449 to
v0.0.461.
giving up progressively more rare as the repertoire size
increases. The fact that individuals with low subjective
resource value signal instead of giving up increases
slightly the number of contests escalating to physical
fights (see Fig. 2), with respect to situations in which the
repertoire is smaller. This result is counterintuitive and
potentially problematic. It seems to depend on the
giving-up option having certain specific properties. If
both players initially decide to give up, they are commit-
ted to sharing the resource (or to accept a random
assignment). This assumption seems unrealistic. If
both players observe the other giving up, an alternative
strategy of trying to monopolize the resource is likely to
do better than the strategy of sharing the resource (cf. the
hawk-dove game, Maynard Smith 1982). It is easy to
remove the specific giving-up option from the model, by
a straightforward modification of equation (A1.1) (see
Appendix 2). The model can be solved numerically and,
as can be seen in Fig. 3, the structure of the solution is
very much the same as in the previous case. The import-
ant difference in the results is that when the repertoire
size increases, the probability of escalation decreases
rather than increases, as shown in Fig. 4. In addition, the
thresholds became slightly higher, meaning that individ-
uals will be a little more cautious in using the more
efficient threat signals.

As mentioned earlier, the above results do not
change qualitatively when we consider other probability
distributions for the subjective resource value. In the
general case we are not able to provide a simple formula
like equation (1), but it is possible to solve the model
numerically. As an example we provide Fig. 5, obtained
with an exponential distribution, where we can see that
the threshold for using the most effective threat moves
slightly when adding four more signals to the repertoire,
but qualitatively the results are the same as in the
uniform-distribution case. We have obtained the same
results for a number of other distributions. A technical
reason for this consistency is that only the cumulative
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distribution function, G(v)=8v
vm

g(î)dî, enters the equa-
tions (see Appendix 1), and all cumulative functions
share important structural properties.
DISCUSSION

The model studied in this paper, originally described by
Enquist (1985), shows that if a physical fight entails a
minimum cost (i.e. a cost that cannot be avoided), then
discrete conventional signalling of a continuous trait
becomes possible in fighting behaviour despite the
opposing interests of the players. In addition, the model
suggests that conventional signalling will be important in
deciding contest outcome when the value of the resource
is of equal or lesser magnitude than the cost of an attack.

How do these predictions compare with reality? The
majority of animal conflicts are not characterized by
signalling in the narrow sense portrayed here. Instead,
fights are dominated by activities that communicate
information about relative fighting ability through the
performance of acts such as pushing or pulling, which are
unbluffable (see e.g. Dawkins & Krebs 1978). These activi-
ties are typically repeated many times and there is an
escalation during the fight (e.g. Enquist & Leimar 1990).
The number of distinct threat displays used is small. We
know of no observations indicating that prolonged fights
are settled by conventional signalling alone. Fights tend
to be longer and more costly when the subjective resource
values increase for both opponents (e.g. Enquist & Leimar
1987). Hence, fights over valuable resources are not set-
tled by conventional signalling. If, however, the resource
is valuable to only one of the contestants a simple threat
display may be decisive. For instance, if an animal hap-
pens to cross into another animal’s territory a threat
display from the owner is usually enough to cause the
intruder to retreat (Davies 1981).

What about when the resource is of low value to both
opponents? The richest and most flexible use of signals
we know of is in contests between birds over resources
such as a few seeds or a temporary resting site (P. L. Hurd
& M. Enquist, unpublished data). The signals used in
these situations are discrete. Intermediate forms of the
displays do occur, but typically behaviour patterns fall
into distinct categories with little variation within each
one (Morris 1957). That subjective resource value influ-
ences choice of signal in fighting behaviour has been
shown by Enquist et al. (1985), Senar (1990) and Popp
(1987).

Another study with results consistent with our model
concerns aggressive signalling in the parrot genus
Trichoglossus (Serpell 1982). In this genus, species with
larger beaks (presumably capable of inflicting more cost
in a single attack) use larger repertoires of signals and
have a lower tendency to attack their mirror images.

In conclusion, existing data on aggressive signalling are
consistent with our results. It must be recognized, how-
ever, that the existing empirical information does not
allow a satisfactory evaluation of the model. For instance,
we need studies of groups other than birds, and exper-
imental data on how subjective resource value influences
choice of agonistic signals.
The only game-theoretical model that we are aware of
that produces discrete conventional signalling from an
underlying continuous variation is the cheap talk model
by Crawford & Sobel (1982; see also Gibbons 1992). In
this model a sender can be in different states (varying
continuously along a single dimension). This state deter-
mines which receiver response is preferable to both the
sender and to the receiver. The players’ interests may not
coincide perfectly but there is a degree of common
interest that can be varied by changing a parameter. The
sender can signal its state to the receiver. The following
solution is obtained: when the players’ interests are not
exactly the same, the sender will not provide perfect
information but rather use a set of discrete signals, each
indicating a set of states. For each degree of common
interest there is an upper bound to the number of signals
that yield an equilibrium solution. When the common
interest increases, more signals are possible and when all
conflicts are removed the state can be communicated
with arbitrary precision.

We recognize several similarities with, as well as differ-
ences from, the model dealt with in this paper. In both
models, the degree to which the state of the individual
can be communicated by signalling decreases when the
conflicts between the players increase. However, in con-
trast to the cheap talk model, our model has no upper
bound for the number of signals but in practice only a
finite number of signals have any likelihood of being
used.

Another difference is that in the cheap talk model the
senders have different interests with respect to the pre-
ferred response. In fighting, the preferred response is
always that the opponent should give up. Thus, it is not
generally required that senders have different preferences
with respect to the receiver’s response to allow for a stable
conventional signalling strategy. Fundamental to fight-
ing strategies is that cost-inflicting behaviour will be used
eventually unless the fight can be settled in some other
way. In our model it is a necessary condition for signal-
ling to occur that the cost of an attack be unavoidable. It
is this cost that produces the common interest between
the players with unequal subjective resource values.
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Appendix 1

In the case of n signals and a uniform distribution in
[0,vM] of resource value, with fights modelled by the war
of attrition, we have to solve the following equations (see
Enquist 1985, for details):

where we recall that v0=vM by definition. By solving the
equations for n=1, 2, 3 and so on, one notices that the
pattern (1) emerges. A more general approach, once this
regularity has been discovered, is to look for the con-
ditions in which the thresholds are independent of
repertoire size, and then verify that in the case of a
uniform distribution of v and war-of-attrition fights, the
result (1) holds.

The general form of (A1.1) is (see Enquist 1985):

where d(vi,vi+1) is the cost of a physical fight for an
individual with subjective resource value vi fighting
against the subpopulation of individuals whose resource
values are in the interval [vi+1,vi], and G(v) is the
cumulative function pertaining to the assumed
distribution g(v):

vm being the lower end of the resource interval.
The system (A1.2) can be solved, without any assump-

tions on the function d(vi,vi+1), in the hypothesis that the
thresholds are independent of n. To see this, consider
what happens when going from n=2 to n=3. In the first
case we only have one threshold, satisfying:

while in the second case we have to solve:

If the thresholds do not move (A1.4) is still valid, so that
it can be used together with (A1.5b) to find the thresholds
without dealing with the more complex equation (A1.5a)
involving the cost function d(v1,v2). This, in turn, poses a
constraint on d(v1,v2), so that when v1 and v2 are linked
by (A1.5b), then (A1.5a) has to be satisfied. This can easily
be generalized to n signals, in which case the thresholds
satisfy the following equations:

The relations (A1.6) give the expressions (1) in the
uniform-distribution case, when G(v)=v/vM. By using
these expressions in (A1.2), we find, after some algebra,
that the constraint on d(vi,vi+1)can be written as:

where, we recall, there is only one independent threshold
in (A1.7) due to the relations (A1.6) . This means that
equation (A1.7) does not have to hold for arbitrary
(vi,vi+1) pairs, otherwise the function d(vi,vi+1) would be
fixed to be the right-hand side of equation (A1.7), but it
must hold only when the relations (A1.6) link the differ-
ent thresholds. At this point it is easy to use the appro-
priate expressions for a uniform distribution in [0,1],
G(v)=v, and for the war of attrition, d(vi,vi+1)=(vi+vi+1)/2,
and verify that with these substitutions (A1.7) is satisfied
when the relations (1) hold.

In summary, we have proved that (1) holds in the
n-signal case when resource value is uniformly distributed
and the cost of a physical fight can be expressed as a
function satisfying (A1.7), the war of attrition being
a particular case.
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Appendix 2

When we exclude the specific giving-up option from the
model, we have the equation:

(G(vi)"G(vi+1))(d(vi,vi+1)"c)"
c(G(vi"1)"G(vi))=0 i=1, . . ., n"1 (A2.1)
that is a straightforward modification of (A1.1): the
second equation has simply been removed.
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